
 1 

 Towards a Spatial Analysis of Shooting in 
 Philippine Basketball: Applications in the 
 University Athletics Association of the 
 Philippines Mens̓ Basketball Tournament 
 (Season 81) 
 FIRST COMPLETE DRAFT (NOT FINAL COPY) 

 Ben Hur Pintor 
 MS Geomatics Engineering (GeoInformatics) 
 National Graduate School of Engineering 
 University of the Philippines 



 2 

 1.  Introduction 

 1.1  Background 

 Basketball  is  spatial  .  Any  event  that  occurs  during  a  basketball  game—a  made 

 shot,  a  missed  shot,  a  rebound—has  a  corresponding  spatial  or  spatio-temporal 

 information  embedded  in  it  and,  one  can  argue,  that  location  o�entimes  plays  an 

 important role in its occurrence or success. 

 If  you  think  of  the  basketball  court  as  a  map,  a  parcel  of  the  earth,  or  simply  a 

 cartesian  coordinate  plane  then  every  location  on  the  court  can  be  specified  by  a 

 coordinate  pair.  If  we  consider  one  type  of  basketball  event—a  shot  or  field 

 goal—every  occurrence  of  this  event  on  the  court  will  have  its  own  corresponding 

 coordinates.  Aside  from  coordinates,  these  field  goals  can  also  have  attributes  or 

 marks—the  name  of  the  player,  the  name  of  the  team,  the  opponent,  the  time  le�  on 

 the  clock,  whether  the  shot  was  made  or  not,  whether  it  was  defended—that  provide 

 other  information  about  the  field  goal.  If  we  take  this  collection  of  field  goals,  what 

 we  actually  have  is  a  collection  of  points  in  space  that  is,  similar  to  any  spatial  point 

 dataset,  susceptible  to  spatial  analysis.  This  is  why  it  makes  sense  to  analyze 

 basketball from a spatial perspective. 

 The  advent  of  player  tracking  systems  in  basketball  such  as  the  SportVU 

 Player  Tracking  System  used  in  the  National  Basketball  Association  (NBA)  has 

 enabled  research  and  studies  that  use  location  data  to  create  a  deeper 
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 understanding  of  the  spatial  nature  of  the  game  and  even  challenge  conventional 

 wisdom.  Optical  tracking  data  has  been  used  to  study  shooting  and  introduce 

 spatially-aware  metrics  for  analysing  shooting  tendencies  and  potency—metrics  like 

 Spread  and  Range  (Goldsberry,  2012)  that  measure  how  much  of  the  court  a  player 

 shoots  and  scores  from,  Spatial  Shooting  Effectiveness  (SSE)  and  Points  Over  League 

 Average  (POLA)  (Shortridge  et  al.,  2014)  that  compare  a  player s̓  actual  and  expected 

 scoring  performance  based  on  the  spatial  distribution  of  his  shots,  and  Lineups 

 Points  Lost  (LPL)  (Sandholtz  et  al.,  2019)  that  looks  at  field  goals  as  an  optimal 

 allocation  problem  and  computes  the  difference  between  what  a  five-man  lineup  is 

 expected  to  score  if  they  optimized  their  choice  of  field  goals  versus  what  the  same 

 five-man  lineup  actually  scores.  Spatial  analysis  has  also  been  used  to  study  and 

 deconstruct  rebounding  with  new  metrics  for  positioning,  hustle,  and  conversion  of 

 rebounds  generated  using  a  Voronoi-tessellation  approach  combined  with  a  spatial 

 probability  distribution  (Maheswarean  et  al.,  2012;  Maheswaran  et  al.,  2014). 

 Defense  has  also  been  studied  (Goldsberry  et  al.,  2013;  Franks  et  al.,  2015)  as  well  as 

 the  effects  of  player  motion  on  creating  open  shots  (DA̓mour  et  al.,  2015).  Optical 

 tracking  data  has  even  been  used  to  determine  the  value  of  different  areas  on  the 

 court  (Cervone  et  al.,  2016a)  and  predict  the  outcomes  of  basketball  possessions 

 (Cervone et al., 2016). 

 Truly,  the  application  of  spatial  analysis  in  basketball  has  added  a  new 

 dimension to how we view the game. 
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 1.2  Basketball analysis in the Philippines 

 Advanced  and  spatial  analytics  do  not  seem  to  be  part  of  mainstream 

 basketball  analysis  in  the  country  as  evidenced  by  the  lack  of  available  data  and 

 information  released  by  popular  basketball  leagues  such  as  the  Philippine 

 Basketball  Association  (PBA),  Maharlika  Pilipinas  Basketball  League  (MPBL), 

 University  Athletics  Association  of  the  Philippines  (UAAP),  and  National  Collegiate 

 Athletics  Association  (NCAA).  Compared  to  the  NBA  which  releases  a  wide  variety  of 

 statistics  in  its  Official  NBA  Stats  website  (  https://www.nba.com/stats/  )  and  in  other 

 sites  such  as  Basketball  Reference  (  https://www.basketball-reference.com/  ),  it s̓  hard 

 to  find  any  publicly  available  advanced  statistics  websites  for  Philippine  basketball. 

 One  example  is  HumbleBola  (  https://twitter.com/humblebola_  )  although  at  the  time 

 of  this  writing,  their  website  (  https://humblebola.com  )  is  no  longer  available. 

 Meanwhile,  websites  of  mainstream  media  outlets  such  as  ABS-CBN  that  cover 

 collegiate  basketball  leagues  and  the  official  PBA  (  https://www.pba.ph/stats  )  and 

 MPBL  (  https://mpbl.web.geniussports.com/competitions/  )  websites  only  show  basic 

 counting  and  rate  statistics  such  as  the  number  of  field  goals,  field  goal  percentage, 

 etc. 

 That s̓  not  to  say  that  analytics  isnʼt  used  in  Philippine  basketball.  An  article 

 by  Socamos  (2018)  highlighted  the  use  of  data  and  analytics  by  the  Alaska  Aces  in 

 the  PBA  and  the  National  University  Bulldogs  in  the  UAAP.  Another  article  by 

 Murillo  (2019)  mentioned  that  “while  use  of  sports  analytics  in  the  Philippines  is 

https://www.nba.com/stats/
https://www.basketball-reference.com/
https://twitter.com/humblebola_
https://humblebola.com/
https://www.pba.ph/stats
https://mpbl.web.geniussports.com/competitions/
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 acknowledged  to  be  still  in  its  infancy,  it  has  nonetheless  made  in-roads  with  more 

 teams  and  organizations  recognizing  its  value  and  potential”  noting  that  in  the  PBA, 

 the  Alaska  Aces  and  the  Ginebra  San  Miguel  Kings  were  using  sports  analytics  with 

 designated  personnel.  The  same  article  stated  that  “despite  the  pickup  that  sports 

 analytics  has  gained  in  the  Philippines,...  its  appreciation  and  use  of  it  are  still  a  way 

 off  as  compared  to  those  in  other  countries,  especially  in  those  with  readily  available 

 technology  and  equipment”  (Murillo,  2019).  In  the  UAAP,  personal  correspondence 

 with  individuals  who  work  on  managing  the  UP  Fighting  Maroons  Mens̓  Basketball 

 Team  informed  me  that  the  team  uses  a  combination  of  videos  and  statistics  in  their 

 game preparation and analysis. 

 1.3  Incorporating the spatial nature of shooting 

 Players  shoot  differently  at  different  locations  on  the  court  and  this  variation 

 has  effects  on  how  players  are  rated,  how  they  are  trained,  and  how  teams  create 

 strategies.  Conventional  shooting  statistics  such  as  the  number  of  made  field  goals 

 or  the  field  goal  percentage  that  do  not  account  for  the  spatial  nature  of  shooting 

 provide  incomplete  and,  at  times,  incorrect  information  about  the  phenomenon 

 that can lead to incorrect conclusions. 

 Take  for  example  two  players  who  both  attempted  100  field  goals  over  the 

 course  of  a  season—Player  A  shot  50%  from  the  court  and  Player  B  shot  40%  from 

 the  court.  When  only  this  information  is  provided,  it  may  be  assumed  that  Player  A 
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 is  a  better  shooter  than  Player  B  but  this  conclusion  fails  to  consider  that  the  two 

 players  may  not  be  shooting  from  the  same  locations  on  the  court.  This  is 

 problematic  because  there  are  several  instances  when  Player  B  can  be  considered  a 

 better  shooter  than  Player  A  in  this  scenario.  One  example  is  when  Player  A  is  only 

 taking  two-pointers  and  thus  scoring  1  point  per  attempt  while  Player  B  is  only 

 taking  three-pointers  and  thus  scoring  1.2  points  per  attempt,  outscoring  Player  A 

 by  0.2  points  with  every  shot.  Another  example  is  when  Player  A  takes  shots  at  areas 

 where  other  players  average  shooting  60%  from  while  Player  B  takes  shots  from 

 areas  where  other  players  average  shooting  33%  from.  This  means  that  Player  A  is 

 actually a below-average shooter while Player B is an above-average one. 

 So  what  makes  a  good  shooter?  Is  it  someone  who  simply  makes  a  high 

 percentage  of  his  shots  like  a  center  or  power  forward  who  dominates  the  interior 

 but  rarely  takes  shots  outside  the  paint?  Is  it  someone  who  can  make  shots  that  are 

 far  from  the  basket,  a  three-point  specialist  perhaps?  Or  is  it  someone  who  is  a 

 threat  to  score  everywhere  on  the  court  even  though  they  may  not  shoot  particularly 

 well  overall?  When  answering  this  question,  conventional  statistics  such  as  FG%, 

 3P%,  PPA,  eFG,  and  TS%  provide  a  generalized  version  of  a  player's  shooting  or 

 scoring  ability  but  they  don't  provide  context  as  to  the  locations  where  players  shoot 

 and  how  well  they  shoot  at  these  locations.  This  is  disappointing  because,  when  you 

 think  about  it,  being  able  to  pinpoint  where  a  player  or  team  scores  is  a  powerful 

 tool to have when creating basketball strategies and game plans. 
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 As  part  of  the  research,  a  survey  shown  in  Figure  1.1  was  conducted  where 

 respondents  were  asked  to  select  who  they  thought  was  the  best  shooter  among 

 three  players.  They  werenʼt  explicitly  told  that  they  were  selecting  from  the  same 

 three  players  in  all  the  questions  and  in  each  of  the  questions,  only  some 

 information  was  shown  to  them.  In  the  first  question  they  were  given  just  names  of 

 players;  in  the  second,  the  FG  and  FG%  of  the  players;  and  in  the  third,  the  3P  and 

 3P% of the players. Table 1.1. summarizes the players and their shooting statistics. 
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 Figure 1.1 

 Questions in the “Who is the best shooter?” survey 
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 player  team  2PA 
 # of 2pt FGs 

 attempted 

 2P 
 # of 2pt FGs 

 made 

 2P% 
 2P / 2PA 

 3PA 
 # of 3pt FGs 

 attempted 

 3P 
 # of 3pt FGs 

 made 

 3P% 
 3P / 3PA 

 B. Akhuetie  UP  174  106  0.6092  3  0  0.0000 

 Ju. GDL  UP  107  55  0.5140  73  23  0.3151 

 P. Desiderio  UP  95  48  0.5003  81  24  0.2963 

 player  team  FGA 
 # of  FGs 

 attempted 

 FG 
 # of FGs 

 made 

 FG% 
 FG / FGA 

 eFG% 
 (FG + 0.5 * 
 3P) / FGA 

 PPA 
 ((2 * 2P) + (3 
 * 3P)) / FGA 

 B. Akhuetie  UP  177  106  0.5989  0.5989  1.20 

 Ju. GDL  UP  180  78  0.4333  0/4972  0.99 

 P. Desiderio  UP  176  72  0.4091  0.4773  0.95 

 Table 1.1 

 Shooting statistics of B. Akhuetie, Ju. Gomez de Liaño, and P. Desiderio for UAAP S81 

 The  results  of  the  survey  were  interesting  in  that  the  respondents  rarely 

 selected  the  same  player  for  all  three  questions.  Only  3/82  selected  the  same  player 

 in  all  three  questions  while  32/82  selected  a  different  player  for  each  of  the 

 questions.  They  were  consistent  in  choosing  the  player  with  the  best  percentage  as 

 the  best  shooter.  More  than  90%  of  the  time  they  selected  the  player  with  the  best 

 FG%  in  question  2  (73/82)  and  the  best  3P%  in  question  3  (77/82)  even  though  these 

 were 2 different players. 
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 Figure  1.2  shows  the  results  of  the  survey  while  Figure  1.3  shows  a  shot  chart 

 of the three players. 

 Figure 1.2 

 The best shooter as chosen by respondents 
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 Figure 1.3 

 Shot chart of Bright Akhuetie, Juan GDL, and Paul Desiderio for UAAP S81 

 Bright  was  almost  always  selected  as  the  best  shooter  when  the  respondents 

 were  only  shown  the  Field  Goal  information  as  was  the  case  with  Juan  in  the 

 question  showing  3P  information,  but  an  interesting  observation  is  that  Desiderio 

 was  selected  as  the  best  shooter  25x  just  from  name  alone  but  was  not  selected  more 

 than  5x  when  the  respondents  were  shown  statistics  --  probably  a  testament  to  the 

 effect that reputation has when assessing players. 
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 It s̓  also  worth  noting  that  a  lot  of  the  respondents  chose  “Someone  who  can 

 make  a  high  percentage  of  his  shots  from  different  areas  on  the  court.”  as  their 

 definition  of  a  good  shooter.  This  can  be  the  reason  why  Bright  was  almost  never 

 chosen  as  the  best  shooter  for  questions  1  and  3.  He  had  no  3P  game  to  speak  of  as 

 seen  in  the  statistics  and  the  distribution  of  his  field  goals.  So  even  though  he  had 

 the  best  metrics  among  the  players  in  all  but  3P  shooting,  respondents  rarely  chose 

 him as their best shooter just from his name alone. 

 Conventional  shooting  statistics  also  have  trouble  differentiating  players  with 

 similar  shooting  statistics.  Table1.2  shows  the  shooting  statistics  of  Paul  Desiderio, 

 Dave  Ildefonso,  and  Sean  Manganti—players  of  UP,  NU,  and  Adamson  respectively  in 

 Season  81.  If  you  look  at  their  stats,  they  are  practically  the  same  players  with 

 similar  number  of  attempts,  percentages,  and  metrics  across  the  board.  This  might 

 lead people to believe that they also shoot the same way but this isnʼt the case. 
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 player  team  2PA 
 # of 2pt FGs 

 attempted 

 2P 
 # of 2pt FGs 

 made 

 2P% 
 2P / 2PA 

 3PA 
 # of 3pt FGs 

 attempted 

 3P 
 # of 3pt FGs 

 made 

 3P% 
 3P / 3PA 

 P. Desiderio  UP  95  48  0.5003  81  24  0.2963 

 D. Ildefonso  NU  110  57  0.5182  85  23  0.2706 

 S. Manganti  ADU  106  56  0.5283  66  15  0.2273 

 player  team  FGA 
 # of  FGs 

 attempted 

 FG 
 # of FGs 

 made 

 FG% 
 FG / FGA 

 eFG% 
 (FG + 0.5 * 
 3P) / FGA 

 PPA 
 ((2 * 2P) + (3 
 * 3P)) / FGA 

 P. Desiderio  UP  176  72  0.4091  0.4773  0.95 

 D. Ildefonso  NU  195  80  0.4103  0.4692  0.94 

 S. Manganti  ADU  172  71  0.4128  0.4564  0.91 

 Table 1.2 

 Shooting statistics of P. Desiderio, D. Ildefonso, and S. Manganti for UAAP S81 

 Figure  1.4  shows  a  Voronoi  tessellation  of  the  playersʼ  field  goals  using  the 

 mean  coordinate  of  clusters  computed  using  a  K-means  clustering  with  K=8.  From 

 these  images,  the  nuances  in  their  shooting  styles  that  are  not  readily  apparent  from 

 the  conventional  statistics  can  be  seen.  Paul s̓  clusters  are  fairly  symmetrical,  Dave 

 has  a  cluster  of  shots  near  the  basket,  while  Sean  has  le�  and  right  clusters  for  shots 

 in  the  paint.  These  maps  show  that  even  though  the  three  players  have  similar 

 shooting statistics, they have, in fact, different habits of shooting. 
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 Figure 1.4 

 Field  goal  clusters  and  voronoi  of  P.  Desiderio  (top-le�),  D.  Ildefonso  (top-right),  and  S. 

 Manganti (bottom) for UAAP S81 
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 1.4  Overview of the research 

 The  current  state  of  basketball  analysis  in  the  Philippines  provides  an 

 opportunity  to  utilize  spatial  analysis  techniques  in  Philippine  basketball  and  show 

 not  only  that  it  can  be  done  but  also  its  applications  in  evaluating  the  abilities  and 

 performance of players and teams. 

 This  research  provides  methods  and  metrics  for  analyzing,  visualizing,  and 

 describing  scoring  in  Philippine  basketball—particularly  the  UAAP—in  a  manner 

 that  explicitly  accounts  for  the  spatial  nature  of  shooting.  It  utilizes  a  matrix 

 decomposition  algorithm  known  as  Non-negative  Matrix  Factorization  (NMF)  to 

 divide  the  court  into  areas  or  shooting  zones  where  field  goals  are  commonly  taken 

 and  provide  information  about  how  frequently  players  shoot  from  these  shooting 

 zones.  Using  this  information,  players  are  grouped  and  compared  according  to  their 

 shooting  habits.  It  also  presents  spatial  metrics  to  evaluate  shooting  and  scoring  that 

 build  on  the  SSE  and  POLA  metrics  introduced  by  Shortridge  (2014).  These  metrics 

 measure  the  scoring  effectiveness  at  different  locations  on  the  court  by  comparing 

 the  expected  number  of  points  scored  and  the  actual  points  scored  at  these 

 locations. 

 Finally,  the  research  applies  these  methods  and  metrics  in  a  case  study  of  the 

 UAAP  Mens̓  Basketball  Tournament  (Season  81)  and  showcases  the  value  of  spatial 

 analysis in evaluating players and teams in basketball. 
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 1.5  Research objectives 

 The  general  goal  of  this  research  is  to  display  and  highlight  the  value  of 

 spatial  analysis  as  applied  in  Philippine  basketball.  To  meet  this  goal,  the  specific 

 objectives of this research are: 

 1.  To  divide  the  court  into  shooting  areas  stochastically  by  using  the  spatial 

 dataset  of  field  goals  to  find  commonly  occurring  patterns  of  where  field 

 goals are taken; 

 2.  To group similar players based on their shooting tendencies; 

 3.  To  generate  spatially-aware  metrics  of  shooting  and  show  how  they  can  be 

 applied to analyze players and teams; and 

 4.  To  create  and  share  a  spatial  dataset  of  field  goals  that  can  be  used  for  future 

 research. 

 1.6  Thesis structure 

 This  thesis  is  divided  into  five  chapters.  Chapter  1  provides  a  background  of 

 how  spatial  analysis  has  been  used  to  study  basketball  abroad,  the  current  use  of 

 analytics  in  Philippine  basketball,  and  presents  the  overview  and  objectives  of  the 

 study.  Chapter  2  gives  a  review  of  relevant  literature  on  the  use  of  spatial  analysis  in 

 Philippine  basketball,  the  spatial  characterization  of  field  goals  using  Non-negative 

 Matrix  Factorization,  and  different  spatial  metrics  of  shooting.  Chapter  3  describes 
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 the  scope  and  delimitation  of  the  study,  the  dataset  used,  the  methods  employed, 

 and  the  spatial  metrics  generated.  Chapter  4  presents  a  case  study  applying  the 

 methods  and  metrics  generated  by  the  research  on  the  UAAP  MBT  (Season  81)  and 

 provides  a  detailed  discussion  of  the  results.  Chapter  5  gives  the  summary  and 

 conclusions  of  the  study  and  outlines  recommendations  for  future  research.  The 

 remaining  sections  contain  the  references,  appendices,  glossary  of  terms,  and  other 

 supplementary materials related to the study. 
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 2.  Review of Literature 

 A  review  of  methods  for  quantifying  and  characterizing  basketball  gameplay 

 for  both  the  player  and  team  level  is  given  by  Tenner  and  Franks  (2020)  but  most  of 

 the  literature  pertains  to  studies  using  data  from  the  National  Basketball  Association 

 (NBA).  Although  it  was  noted  that  most  of  the  methods  discussed  there  were  relevant 

 across  all  basketball  leagues,  looking  at  the  current  body  of  work  around  the  spatial 

 analysis  of  basketball,  it  becomes  apparent  that  such  studies  are  rarely  done  in  the 

 Philippine context. 

 2.1  Spatial analysis of Philippine basketball 

 The  use  of  spatial  analytics  in  mainstream  Philippine  basketball  is  not  as 

 common  as  it  is  abroad.  This  can  be  attributed  to  the  lack  of  readily  available  spatial 

 data  that  is  needed  for  spatial  analysis.  Basketball  leagues  in  the  Philippines  either 

 do not have player tracking data or they do not share it publicly. 

 One  study  that  looked  at  the  entire  pipeline  of  spatial  analysis  for  Philippine 

 basketball—from  data  extraction,  storage,  analysis,  and  presentation—was 

 CourtVisionPH  by  Pintor  and  Cataniag  (2014).  Due  to  the  unavailability  of  field  goal 

 location  data,  CourtVisionPH  relied  on  extracting  shooting  locations  from  broadcast 

 basketball  videos  by  utilizing  the  concept  of  transformation  between  two  coordinate 

 reference  systems—that  is,  the  coordinates  on  the  video  frame  where  a  shot  is  taken 
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 can  be  mapped  to  its  corresponding  location  on  a  model  of  the  basketball  court 

 whose  dimensions  and  coordinates  are  known.  The  system  took  advantage  of  the 

 fact  that  a  regulation  basketball  court  has  a  standard  size  and  that  there  are 

 easily-distinguishable  markings  on  the  court  that  could  serve  as  control  points  for 

 solving  the  coordinate  transformation  problem.  These  points  included  the  corners 

 of  the  baseline,  intersections  of  court  lines,  the  corners  of  the  paint,  and  other 

 markings  whose  positions  on  the  court  are  known.  A�er  extracting  the  field  goal 

 locations,  the  data  was  stored  in  a  database  and  spatial  metrics  were  computed  and 

 visualized.  Figure 2.1 details the CourtVisionPH system. 

 Figure 2.1 

 The CourtVisionPH System (Pintor and Cataniag, 2014) 
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 Note:  The  system  was  divided  into  three  primary  modules:  a  data  extraction,  data 

 storage,  and  data  analysis/visualization  module.  Field  goal  data  is  extracted 

 semi-automatically  from  a  video  source  and  stored  in  a  database.  The  data  analysis 

 and  visualization  module  uses  the  stored  data  to  perform  queries,  compute  metrics, 

 and generate maps. 

 Although  crude,  CourtVisionPH  demonstrated  that  the  spatial  analysis  of 

 shooting  is  possible  in  the  Philippine  context.  The  system  has  received  some 

 updates  since  its  release  notably  the  use  of  a  spatial  database  and  existing  geospatial 

 applications  such  as  QGIS  for  the  analysis  and  presentation  instead  of  the  original 

 standalone  analysis/visualization  application.  At  the  time  when  CourtVisionPH  was 

 created,  the  Spread  and  Range  metrics  first  introduced  by  Goldsberry  (2012)  and 

 used  by  the  system  were  still  considerably  novel  but  since  then,  the  number  of 

 researches  and  studies  that  applied  spatial  analysis  to  shooting  have  grown  and 

 newer  methods  and  metrics  have  been  introduced.  Some  of  these  methods  and 

 metrics are discussed in the next section. 

 2.2  Spatial characterization of field goals 

 Dividing  the  court  into  shooting  zones  or  hot  zones  is  a  common  technique 

 used  to  analyze  shooting.  Using  this  approach,  analysts  can  compute  and  compare 

 how  players  and  teams  shoot  at  predefined  partitions  of  the  court.  Most  of  the  time 
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 however,  the  way  the  court  divisions  are  defined  is  arbitrary  and  dependent  on  the 

 person  doing  the  analysis.  Even  though  common  court  divisions  include  general 

 areas  such  as  the  paint,  the  mid-range  area,  the  three-point  area,  the  restricted  area, 

 the  non-restricted  area  in  the  paint,  the  le�  and  right  baseline,  the  le�  and  right 

 block  to  elbow,  the  key,  the  top  of  the  key  three-pointer,  the  le�  and  right  wing 

 three-pointers,  the  corner  three-pointers,  the  way  these  areas  are  delineated  on  the 

 court  still  vary.  Figure  2.2  shows  how  these  general  areas  can  be  divided  differently 

 on the court. 

 Figure 2.2 

 Shooting zone divisions (Top: FIBA LiveStats; Bottom: NBA) 

 Note:  The  FIBA  LiveStats  and  NBA  divisions  partition  the  court  into  the  same  general 

 areas but do so differently. 
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 Although  there  is  value  in  having  predefined  court  divisions,  we  canʼt 

 definitely  say  that  these  divisions  characterize  the  shooting  patterns  present  in  a 

 field  goal  dataset.  What  these  divisions  represent  is  an  idealized  version  of  where 

 and  how  we  think  field  goals  will  be  grouped  together  before  the  fact  but  once 

 players  start  taking  shots,  the  actual  patterns  of  these  field  goals  and  areas  where 

 they  are  commonly  taken  might  partition  the  court  differently.  In  order  to 

 characterize  where  players  take  shots  and  how  frequently  they  take  them,  a 

 data-driven  approach  that  divides  the  court  based  on  patterns  in  the  field  goal 

 dataset is needed. 

 Finding  patterns  in  spatial  datasets  can  be  done  using  clustering  algorithms 

 like  K-means  clustering  or  matrix  decomposition  algorithms  like  Principal 

 Component  Analysis  (PCA)  or  Singular  Value  Decomposition  (SVD).  In  recent  years, 

 the  process  of  Non-negative  Matrix  Factorization  (NMF)  has  gained  traction  in 

 basketball  analytics  for  its  ability  to  divide  the  court  into  parts  and  provide  an 

 approximation of playersʼ shooting habits in those parts. 

 2.2.1  Finding spatial basis vectors using Non-negative Matrix Factorization 

 Non-negative  Matrix  Factorization  or  NMF  is  a  matrix  decomposition 

 algorithm  that  assumes  some  non-negative  matrix  V  can  be  approximated  by  the 

 product of two lower-rank non-negative matrices  W  and  B  where as seen in (2.1). 

 (2.1)  𝑉 =     𝑊𝐵 
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 The  matrix  is  composed  of  N  data  points  each  of  length  X  ,  the  𝑉 ∈  𝑅 
+

 𝑁 × 𝑋 

 basis  loadings  or  weight  matrix  consists  of  N  non-negative  weight  𝑊 ∈  𝑅 
+

 𝑁 × 𝐾 

 vectors,  and  the  basis  matrix  contains  K  basis  vectors.  Each  data  point  in  𝐵 ∈  𝑅 
+

 𝐾 × 𝑋 

 V  can be reconstructed using a combination of  W  and  B  . (Miller, 2014) 

 A  distinct  characteristic  of  NMF  is  that  it  constrains  all  of  its  component 

 matrices  to  be  non-negative.  Because  of  this,  the  resulting  basis  vectors  B  tend  to  be 

 disjoint  and  exhibit  a  “parts-based”  decomposition  that  corresponds  to  frequently 

 occurring  patterns  in  the  sample.  This  has  the  advantage  of  avoiding  the 

 cancellation  phenomenon  exhibited  by  other  non-constrained  matrix  factorization 

 methods  like  PCA.  This  restrictive  property  of  NMF  also  results  in  sparser  and  more 

 interpretable basis vectors. (Lee & Seung, 1999) 

 In  the  case  of  basketball,  using  NMF  to  decompose  a  field  goal  dataset  makes 

 sense  due  to  the  following  reasons:  first,  the  field  goal  matrix—or  the  collection  of 

 field  goals  at  different  locations  on  the  court—is  always  non-negative  because  it  is 

 impossible  to  attempt  a  negative  number  of  shots;  second,  the  outputs  of  NMF 

 correspond  intuitively  to  basketball  concepts.  The  spatial  basis  vectors  in  B  can  be 

 interpreted  as  disjoint  sub-intensities  or  parts  that  represent  shot-types  or  shooting 

 zones  on  the  court.  Meanwhile,  the  player  weights  in  W  can  be  used  to  summarize 

 the  spatial  shooting  habits  of  individual  players  inside  the  spatial  basis  vectors  in  B 

 (Miller et al., 2014; Franks et al., 2015). 
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 The  general  steps  in  applying  NMF  for  deconstructing  field  goals  as 

 presented in Miller et al. (2014),  Franks et al. (2015) and Jiao et al. (2020) are: 

 1.  Discretize the court using a regular tessellation into  X  shooting cells. 

 2.  Construct  a  count  matrix  C  where  C  nx  =  the  number  of  field  goals  by  player  k 

 in cell  x  . 

 3.  Fit  an  intensity  surface  for  each  player  k  over  the λ
 𝑛    

=    (λ
 𝑛  1 

,...    , λ
 𝑛𝑋 

) 𝑇 

 discretized court. 

 4.  Construct  the  data  matrix  (field  goal  matrix)  where  has  𝑉 =    (λ‾
 𝑖 
,...    , λ‾

 𝑁 
)

 𝑇 
λ‾

 𝑛 

 been normalized such that it has a unit volume. 

 5.  Solve  the  optimization  problem  where  W  and  B  are  lower-rank  𝑉 =     𝑊𝐵 

 matrices and all matrices are non-negative. 

 To  fit  the  intensity  surface  of  a  player s̓  field  goals,  Miller  et  al.  (2014)  and 

 Franks  et  al.  (2015)  modeled  them  as  a  Log  Gaussian  Cox  Process  (LGCP)  a�er 

 discretizing  the  court  into  1  square  foot  tiles  to  gain  computational  tractability  in 

 fitting  the  LGCP  surfaces.  Meanwhile,  Jiao  et  al.  (2020)  used  a  kernel  estimation 

 “which  is  easier  to  compute  and  more  accurate  in  the  sense  of  intensity  fitting 

 accuracy”. 

 Figure  2.3  (Miller  et  al.,  2014)  shows  a  comparison  of  the  resulting  basis 

 vectors  generated  by  NMF  with  LGCP-fitted  intensity  surfaces  using  the  (a) 

 Kullback-Leibler  (KL)  and  (b)  Frobenius  loss  functions,  (c)  NMF  with  a  discrete 

 dataset, and (d) PCA with the LGCP-fitted intensity surfaces. 
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 Figure 2.3 

 Visual comparison of basis resulting from various dimensionality reduction approaches. 

 Note:  From  “Factorized  Point  Process  Intensities:  A  Spatial  Analysis  of  Professional 

 Basketball,”  by  A.  Miller  et  al.,  2014,  Proceedings  of  The  31st  International  Conference  on 

 Machine  Learning  (ICML14)  ,  Beijing,  China,  June  22-24,  2014.  Journal  of  Machine 

 Learning Research: W&CP 32: 235-243. 

 According  to  Miller  et  al.  (2014),  the  KL-based  NMF  resulted  in  a  “more 

 spatially  diverse  basis”  compared  to  the  Frobenius-based  one  which  focused  on 

 “high-intensity  areas  near  the  basket”  at  the  expense  of  other  areas  on  the  court. 

 This  can  be  attributed  to  the  difference  between  the  KL  loss  function—which 

 includes  a  log  ratio  term  that  disallows  large  ratios  between  the  original  and 

 reconstructed  matrices—and  the  Frobenius  loss  function—which  does  not  include  a 
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 log  ratio  term  and  thus  only  disallows  large  differences.  Meanwhile,  the  PCA  basis 

 vectors  were  uninterpretable  as  parts  of  the  court  due  to  the  bases  being 

 unconstrained  real  numbers.  The  corner  three-point  feature  that  was  salient  in  the 

 LGCP-NMF  decompositions  appeared  in  several  PCA  vectors  with  positive  and 

 negative  values  that  exhibited  the  cancelation  phenomenon  with  PCA  that  NMF 

 avoids.  Subsequent  studies  using  NMF  by  Franks  et  al.  (  2015),  Sandholtz  et  al. 

 (2019), and Jiao et al. (2020) also used the KL loss function. 

 Miller  et  al.  (2014)  also  found  that  the  LGCP-NMF  method  discovered  a 

 “shots-based  decomposition”  of  NBA  players  where  the  resulting  basis  vectors  B 

 corresponded  to  “visually  interpretable  shot  types”—one  basis  corresponded  to 

 corner  three-point  shots,  another  to  wing  three-point  shots,  and  yet  another  to  top 

 of  the  key  three  point  shots,  etc.—while  the  player  specific  basis  weights  in  W 

 provided  a  concise  characterization  of  player s̓  offensive  habits.  The  weight  w  nk  can 

 be interpreted as the “amount player k takes shot type  k  ”. 

 Miller  et  al.  (2014)  also  showed  that,  a�er  a  certain  K  ,  the  low-rank  NMF 

 reconstructions  had  better  predictive  performance  than  independent  LGCPs  for 

 player  data  with  10%  of  the  shots  held  out.  Figure  2.4  (Miller  et  al.,  2014)  shows  the 

 predictive likelihood for independent LGCP and LGCP-NMF at varying  K  . 
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 Figure 2.4 

 Predictive Likelihood (10-fold cv) of LGCP and LGCP-NMF at varying K 

 Note:  From  “Factorized  Point  Process  Intensities:  A  Spatial  Analysis  of  Professional 

 Basketball,”  by  A.  Miller  et  al.,  2014,  Proceedings  of  The  31st  International  Conference  on 

 Machine  Learning  (ICML14)  ,  Beijing,  China,  June  22-24,  2014.  Journal  of  Machine 

 Learning Research: W&CP 32: 235-243. 

 The  K  values  with  better  predictive  performance  can  be  used  as  the  K  values 

 for  the  NMF  decomposition.  Miller  et  al.  (2014)  and  Jiao  et  al.  (2014)  used  K=10 

 while Franks et al. (2015) used  K=6  . 

 Aside  from  using  a  lower  number  of  bases,  Franks  et  al.  (2015)  also  discarded 

 a  residual  basis  from  the  six  computed  by  NMF  since,  unlike  PCA,  NMF  is  not 

 mean-centered  and  a  residual  basis  appears  regardless  of  the  value  of  K  .  This 

 residual  basis  captures  the  positive  intensities  outside  the  support  of  the  relevant 
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 bases  and  is  therefore  not  used  in  the  analysis.  Figure  2.5  (Franks  et  al.,  2015)  shows 

 the spatial bases  identified using LGCP-NMF with  K=6  . 

 Similar  to  Miller  et  al.  (2014),  Franks  et  al.  (2015)  also  arrived  at  a  “shot-based 

 decomposition  of  NBA  players”  where  the  bases  corresponded  to  shots  in  the 

 restricted  area  (Basis  1),  shots  from  the  rest  of  the  paint  (Basis  2),  mid-range  shots 

 (Basis 3), corner three-point shots (Basis 4), and center three-point shots (Basis 5). 

 Figure 2.4 

 The basis vectors and the residual basis using LGCP-NMF with KL loss function and K=6 

 Note:  From  “Characterizing  the  Spatial  Structure  of  Defensive  Skill  in  Professional 

 Basketball,”  by  A.  Franks  et  al.,  2015,  The  Annals  of  Applied  Statistics  ,  2015,  Vol.  9,  No. 

 1, 94–121. 
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 The  spatial  basis  and  weights  matrices  generated  by  NMF  have  applications 

 beyond  simply  providing  court  divisions  and  an  approximation  of  player  shooting 

 tendencies.  They  have  been  used  in  conjunction  with  other  models  to  “estimate  the 

 probability  of  a  made  shot  for  each  point  in  the  offensive  half  court  for  each 

 individual  player”  (Miller  et  al.,  2014),  “to  characterize  how  players  affect  both 

 shooting  frequency  and  efficiency  of  the  player  they  are  guarding”  (Franks  et  al., 

 2015),  to  study  the  “optimal  way  to  allocate  shots  within  a  lineup”  and  “measure  how 

 efficiently  a  lineup  adheres  to  optimal  allocative  efficiency”  (Sandholtz  et  al.,  2019), 

 and the “association between shooting frequency and accuracy” (Jiao et al., 2020). 

 2.2.1.1  Finding the optimal number of basis or factorization rank 

 The  number  of  basis  vectors  or  factorization  rank  (K)  is  a  crucial  parameter 

 in  NMF.  The  optimal  number  of  basis  vectors  will  allow  the  dataset  to  be 

 decomposed  into  latent  features  without  overfitting  the  model.  Miller  (2014)  and 

 Franks  (2015)  both  used  a  10-fold  cross  validation  between  the  predictive 

 performance  of  LGCP  and  LGCP-NMF  over  different  values  of  k  to  select  the  optimal 

 number of basis vectors. 

 Several  other  methods  for  determining  the  optimal  factorization  rank  of 

 NMF  have  been  proposed  especially  when  working  with  omic  data.  Brunet  (2004) 

 looked  at  the  cophenetic  coefficients  and  proposed  to  take  the  first  value  of  K  for 

 which  the  coefficient  starts  decreasing.  Hutchins  (2008)  showed  that  the  first  value 
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 where  the  residual  sum  of  squares  (rss)  curve  showed  an  inflection  point  provided  a 

 robust  estimate  of  the  proper  number  of  vectors.  Meanwhile,  Frigyesi  (2008) 

 estimated  the  appropriate  factorization  rank  by  comparing  the  residual  error  of 

 NMF  reconstruction  of  data  to  that  of  NMF  reconstruction  of  permuted  or  random 

 data  and  suggested  that  K  be  considered  as  the  smallest  value  where  the  decrease  in 

 RSS  computed  from  the  data  is  lower  than  the  decrease  in  RSS  computed  from 

 random data. 

 2.2.2  Grouping similar players based on shooting characteristics 

 Although  individual  players  shoot  differently,  players  with  similar  roles  tend 

 to  have  similar  shooting  characteristics.  This  is  important  when  modelling  the 

 shooting  characteristics  of  players  in  areas  where  they  took  a  low  volume  of  shots. 

 Using  the  W  and  B  outputs  of  NMF,  it  is  possible  to  normalize  the  shooting 

 characteristics  of  players  at  different  areas  on  the  court  based  on  the  characteristics 

 of other similar players. 

 Franks  et  al.  (2015)  initially  used  SVD  and  graphed  the  first  two  principal 

 components  of  the  player  weights  matrix  W  to  determine  groupings  but  found  that 

 “the  players  do  not  cluster;  specifically,  there  appears  to  be  far  more  variability  in 

 offender  types”  and  that  “while  players  tend  to  be  more  similar  to  players  with  the 

 same  listed  position,  on  the  whole,  position  is  not  a  good  predictor  of  an  offender s̓ 

 shooting  characteristics.”  Franks  et  al.  (2015)  then  applied  a  conditionally 
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 autoregressive  (CAR)  model  on  the  player  weights  or  basis  loadings  and  identified 

 “the  10  nearest  neighbors  in  the  space  of  shot  selection  weights”  and  connected  “two 

 players  if,  for  either  player  in  the  pair,  their  partner  is  one  of  their  ten  closest 

 neighbors.” 

 Sandholtz  et  al.  (2019)  also  applied  a  CAR  prior  on  the  player  weights  or  basis 

 loadings  in  order  to  “shrink  the  FG%  estimates  of  players  with  similar  shooting 

 characteristics  toward  each  other”.  This  helped  regularize  the  values  by  “borrowing 

 strength  from  the  player s̓  neighbors  in  the  estimation”  especially  for  cells  where  a 

 player  attempted  a  low  number  of  field  goals.  To  find  similar  players,  the  Euclidean 

 distance  between  the  player  weights  were  computed  and  the  5  players  with  the 

 nearest  distance  from  player  k  were  determined  as  his  neighbors.  Symmetry  was 

 enforced  in  the  nearest-neighbors  relationship  by  assuming  that  “if  player  j  is  a 

 neighbor of player  l  then player  l  is also a neighbor  of player  j  ”. 

 2.3  Spatial metrics of shooting 

 Several  metrics  have  been  proposed  that  measure  shooting  effectiveness  and 

 also  account  for  the  effects  of  location.  These  “spatially-aware”  metrics  range  from 

 simple  assessments  of  how  players  score  at  different  areas  on  the  court, 

 comparisons  between  expected  and  actual  points  scored  at  different  court  locations, 

 finding  the  optimal  allocation  of  field  goals  for  a  team  based  on  the  shooting 
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 characteristics  of  a  lineup,  and  even  hierarchical  and  high-resolution  data  models  of 

 shooting. Some examples of these metrics are discussed in the next sections. 

 2.3.1  Spread and Range 

 Spread  and  Range,  introduced  by  Goldsberry  (2012)  in  the  paper  CourtVision: 

 CourtVision:  New  Visual  and  Spatial  Analytics  for  the  NBA  ,  are  some  of  the  earliest  and 

 most  influential  of  these  spatial  shooting  metrics.  CourtVision  tried  to  answer  the 

 question  of  who  the  best  shooter  was  in  the  NBA  at  that  time  and  argued  that 

 conventional  metrics  and  evaluative  approaches  fail  to  provide  a  simple  answer  to 

 this  question—in  essence,  these  conventional  metrics  failed  to  account  for  the 

 spatial  aspect  of  shooting—so  it  proposed  a  new  way  to  quantify  the  shooting  range 

 of  NBA  players  and  measure  shooting  abilities  using  “spatially-aware”  metrics.  It 

 found  that  from  2006-2011,  more  than  98%  of  the  field  goal  attempts  in  the  NBA 

 occurred  within  a  1,284  �  2  area  in  between  the  baseline  and  a  relatively  thin  buffer 

 around  the  3-point  arc  which  was  designated  as  the  “scoring  area.”  This  scoring  area 

 was  divided  into  unique  1�  2  cells  and  the  Spread  and  Range  metrics  were  computed 

 using the cells. 

 Spread  is  simply  a  count  of  the  unique  shooting  cells  in  which  a  player  has 

 attempted  at  least  one  field  goal.  It  summarizes  the  diversity  of  a  player s̓  shooting 

 attempts or the overall size of a player s̓ shooting territory given by (2.2). 
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 (2.2)  𝑆𝑝𝑟𝑒𝑎𝑑 =    
 𝑖    ∈ 𝑆𝐴 

∑  𝐹𝐺  𝐴 
 𝑖 

 where: 

 FGA  i  = 1 if at least one field goal was taken in cell  i, 0 otherwise 

 SA = the scoring area 

 Dividing  Spread  by  1284  resulted  in  Spread%  which  is  the  percentage  of  the 

 scoring area where a player attempted at least 1 shot. 

 Range  accounts  for  spatial  influences  on  shooting  effectiveness  by  counting 

 the  number  of  shooting  cells  in  which  a  player  averages  more  than  1  PPA  as  given  by 

 (2.3).  PPA  was  chosen  over  FG%  because  it  inherently  accounts  for  the  differences 

 between two-point and three-point field goal attempts. 

 (2.3)  𝑅𝑎𝑛𝑔𝑒 =    
 𝑖    ∈ 𝑆𝐴 

∑  𝑃𝑃  𝐴 
 𝑖 

 where: 

 PPA  i  = 1 if PPA >1 in cell i, 0 otherwise 

 SA = the scoring area 

 Dividing  Range  by  1284  resulted  in  Range%  which  is  the  percentage  of  the 

 scoring area where a player scored at least 1 PPA. 
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 CourtVision  ̓s  ideas  were  novel  for  its  time  and  its  approach  served  as  the 

 blueprint  for  succeeding  studies  that  measured  shooting  spatially.  However,  putting 

 Spread  and  Range  in  the  current  era  of  basketball  shows  some  limitations  in  these 

 metrics.  First,  the  scoring  area  defined  in  the  original  study  has,  without  a  doubt, 

 increased  from  the  original  1284  �  2  .  Three-pointers  are  more  common  now  and 

 have  even  become  the  staple  of  some  offenses.  In  the  NBA,  there  are  some  games 

 where  teams  attempt  more  three-point  field  goals  than  two-point  field  goals.  Players 

 are  shooting  more  three-pointers  and  shooting  them  from  farther  away  than  they 

 were  10  years  ago  and  this  will  have  an  effect  on  the  definition  of  the  “scoring  area”. 

 Second,  although  the  choice  of  PPA  over  FG%  was  a  great  move,  estimating  a 

 player s̓  shooting  performance  at  different  areas  on  the  court  by  comparing  it  to  a 

 single  value  for  all  locations—in  the  case  of  Range,  1  PPA—runs  contrary  to  the  fact 

 that  the  scoring  geography  on  the  basketball  court  is  not  flat.  If  we  take  all  the  field 

 goals  for  a  season  or  league  and  map  them  on  the  court,  we  will  find  that  there  are 

 areas  where,  on  average,  players  shoot  and  score  more  efficiently  and  there  are 

 other  areas  where,  on  average,  they  score  less.  The  scoring  geography  of  the 

 basketball court is more similar to hills and valleys than it is to a plain. 
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 2.3.2  Spatial Shooting Effectiveness and Points Over League Average 

 Instead  of  comparing  a  player s̓  scoring  ability  at  different  locations  on  the 

 court  to  a  single  value,  Shortridge  et  al.  (2014)  compared  it  to  the  expected  points 

 that  a  player  should  score  at  a  location  based  on  how  other  players  in  the  league 

 were  scoring,  on  average,  from  that  location.  Similar  to  Goldsberry  (2012), 

 Shortridge  et  al.  (2014)  also  divided  the  court  into  1  �  2  cells  that  served  as  the  basis 

 for  computing  the  Spatial  Shooting  Effectiveness  (SSE)  and  Points  Over  League 

 Average  (POLA)  metrics  albeit  the  division  was  for  the  entire  half  court  and  not  just 

 for  the  1284  �  2  “scoring  area”  described  in  the  earlier  study.  SSE  and  POLA  evaluate  a 

 player s̓  scoring  effectiveness  by  considering  spatially  the  relative  difficulty  of  their 

 field  goal  attempts  based  on  the  locations  they  take  them  and  the  scoring 

 effectiveness of other players in these same locations. 

 Another  innovation  introduced  by  Shortridge  et  al.  (2014)  was  the  use  of  an 

 Empirical  Bayes  (EB)  estimate  for  the  FG  rate  (or  FG%)  at  each  cell  instead  of  the 

 raw  rate.  This  was  done  to  account  for  the  uncertainty  in  the  positional  accuracy  of 

 the  field  goal  dataset  as  well  as  the  uncertainty  in  the  estimated  FG%  for  cells  with  a 

 small  number  of  attempts  and  resulted  in  an  EB-estimated  FG%  map  that  is 

 smoother and less noisy. 

 The  Empirical  Bayes  approach  computes  an  estimate  of  the  true  rate  at  each 

 location  as  a  weighted  combination  of  a  prior  probability  distribution  function  and 

 the  local  raw  rate.  In  Shortridge  et  al.  (2014),  a  reasonable  assumption  was  made 
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 that  the  prior  distribution  would  include  the  locations  that  are  about  the  same 

 distance  from  the  basket  and  those  relatively  close  to  the  location  being  estimated. 

 Mathematically,  the  prior  distribution  for  cell  i  positioned  d  feet  from  the  basket 

 includes those cells satisfying both of the following conditions: 

 ●  equidistant from the basket: within 1.2 feet of  d 

 ●  close: < 5 feet from  i 

 Compared  to  other  kernel  smoothing  methods,  the  Empirical  Bayes  approach 

 “explicitly  accounts  for  distance  from  the  basket”  and  excludes  locations  that  are 

 substantially  nearer  or  farther  from  the  basket  in  the  estimation  of  the  rate.  It  also 

 allows  for  the  modification  of  the  prior  or  local  neighborhood  to  “ensure  robust  rate 

 estimation”  and  “provides  more  adjustment  to  raw  rates  in  locations  where  fewer 

 shorts  are  attempted  while  maintaining  local  yet  meaningful  departures  from  the 

 neighborhood  rate  in  locations  supported  by  a  high  local  number  of  shots” 

 (Shortridge et al., 2014). 
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 Figure  2.5  shows  a  comparison  between  the  raw  FG%  and  the  EB-estimated 

 FG% in Shortridge et al. (2014). 

 Figure 2.5 

 Mapped  shooting  patterns  from  the  2011  to  2012  NBA  regular  season:  (A)  raw  field  goal 

 rate  surface;  (B)  empirical  Bayesian  smoothed  FG  rate  estimate,  based  on  all  shots  taken  in 

 that season. Color/shade scales represent the same rates for both surfaces. 

 Note:  From  “Creating  space  to  shoot:  quantifying  spatial  relative  field  goal  efficiency 

 in  basketball,”  by  A.  Shortridge  et  al.,  2014,  Journal  of  Quantitative  Analysis  in 

 Sports, 10(3), 303-313. 

 The  EB-estimated  FG%  (  )  was  used  to  compute  the  number  of  points  a θ
^

 player  is  expected  to  score  at  each  cell  (ELPTS)  based  on  the  number  of  his  field  goal 

 attempts at each cell given by Shortridge et al. (2014) in (2.4) 
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 (2.4)  𝐸𝐿𝑃𝑇  𝑆 
 𝑖𝑘 

=    θ
^

 𝑖 
×  𝐹𝐺  𝐴 

 𝑖𝑘 
×  𝑃𝐵  𝐵 

 𝑖 

 where: 

 FGA  ik  = number of shots taken by player k at cell  i 

 PBB  i  = number of points a FG at cell i is worth 

 These ELPTS values were then used to compute for SSE and POLA. 

 SSE  is  essentially  a  measure  of  how  much  a  player  is  scoring  per  shot  versus 

 how  much  he  is  expected  to  score  per  shot  given  the  spatial  distribution  of  his  field 

 goals.  It  indicates  the  difference  between  a  player s̓  expected  and  actual  points  per 

 attempt.  Positive  values  indicate  that  the  player  is  scoring  more  effectively  than 

 expected  while  negative  values  indicate  that  the  player  is  scoring  less  effectively.  The 

 units of SSE are in points per shot. 

 To  compute  the  SSE  of  player  k  given  by  (2.6),  the  Expected  Points  Per  Shot 

 (  EPPS  )  given  by  (2.5)  is  first  computed.  EPPS  is  a  summary  measure  characterizing 

 the  average  difficulty  of  the  spatial  distribution  of  player  k s̓  field  goal  and  is  simply 

 the  sum  of  the  Expected  Local  Points  (ELPTS)  across  all  cells  N  where  player  k 

 attempted  at  least  1  FGA  divided  by  the  total  number  of  field  goals  attempted  by 

 player  k  anywhere  on  the  court.  A  high  EPPS  suggests  that  the  player  takes  shots  that 

 are,  based  on  league  average,  easy  to  convert  while  a  low  EPPS  suggests  that  the 

 player  takes  shots  at  areas  that  are,  based  on  league  average,  difficult  to  score  from. 

 (Shortridge et al., 2014). 
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 (2.5)  𝐸𝑃𝑃  𝑆 
 𝑘 

=     𝑖 = 1 

 𝑁 

∑  𝐸𝐿𝑃𝑇  𝑆 
 𝑖𝑘 

 𝐹𝐺  𝐴 
 𝑘 

 where: 

 N = all the cells where player k has at least 1 FGA 

 FGA  k  = the number of field goal attempts by player  K 

 (2.6)  𝑆𝑆  𝐸 
 𝑘 

=     𝑃𝑃  𝑆 
 𝑘 
   −     𝐸𝑃𝑃  𝑆 

 𝑘 

 where: 

 PPS  k  = the actual points per shot of player k (PPA) 

 EPPS  k  =  the  estimated  points  per  shot  of  player  k  based  on  the  spatial 

 distribution of his shots. 

 Meanwhile,  POLA  is  a  measure  of  the  total  number  of  points  that  a  player 

 scored  compared  to  the  number  of  points  he  is  expected  to  score  given  the  spatial 

 distribution  of  his  field  goals.  Similar  to  SSE,  positive  values  indicate  that  the  player 

 is  scoring  more  than  expected  while  negative  values  indicate  that  the  player  is 

 scoring  less  than  expected.  Its  units  are  in  points.  In  Shortridge  et  al.  (2014),  the 

 POLA of player  k  is given by (2.7). 
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 (2.7)  𝑃𝑂𝐿  𝐴 
 𝑘 

=     𝑃𝑇  𝑆 
 𝑘 
   −    

 𝑖 = 1 

 𝑁 

∑  𝐸𝐿𝑃𝑇  𝑆 
 𝑘 

 where: 

 N = the cells where a player takes at least 1 FGA 

 PTS  k  = the actual points per scored by player k 

 Both  SSE  and  POLA  can  be  computed  globally  resulting  in  a  single  number 

 that  summarizes  a  player s̓  shooting  or  scoring  effectiveness  based  on  the  spatial 

 distribution  of  his  field  goal  attempts  or  locally  on  a  per-cell  basis  which  enables  it 

 to be mapped and show the spatial distribution of the metric. 

 The  assessment  and  evaluation  of  SSE  and  POLA  were  done  two  ways  by 

 Shortridge  et  al.  (2014):  comparing  the  actual  and  observed  points,  and  direct 

 comparison  of  SSE  or  POLA  values  of  two  players.  In  the  first  case,  they  utilized  a 

 weighted,  paired  t-test  to  evaluate  whether  the  observed  points  differ  significantly 

 from  the  expected  points.  In  the  second  case,  they  used  the  same  weighted  t-test  to 

 determine  whether  a  field  goal  distributions̓  POLA  or  SSE  values  are  significantly 

 larger  than  another s̓.  In  the  latter  case,  the  t-test  cannot  be  paired  since  the  two 

 field  goal  distributions  cannot  be  assumed  to  be  identical.  The  weighted  mean 

 (  SSE  ik  )  is  given  by  (2.8);  the  weighted  variance  (  s  2  )  is  provided  by  (2.9);  and  the 

 weighted sum of squares (  WSS  k  ) is computed using (2.10). 
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 (2.8)  𝑆𝑆𝐸 
 𝑘 

=     𝑖 = 1 

 𝑁 

∑  𝐹𝐺  𝐴 
 𝑖𝑘 

   ×    𝐿𝑆𝑆  𝐸 
 𝑖𝑘 

 𝑖 = 1 

 𝑁 

∑  𝐹𝐺  𝐴 
 𝑖𝑘 

 where: 

 N = the cells where a player takes at least 1 FGA 

 LSSE  ik  = local SSE value for the cell 

 FGA  ik  = number of field goal attempts at the cell 

 (2.9)  𝑠  2 =    
 𝑊𝑆𝑆 

 𝑘 
   −   ( 𝑁    ×    𝑆𝑆𝐸 

 𝑘 
 2 )

( 𝑁    −    1 )

 where: 

 N = the cells where a player takes at least 1 FGA 

 WSS  k  = weighted sum of squares 

 (2.10)  𝑆𝑆𝐸 
 𝑘 

=     𝑖 = 1 

 𝑁 

∑  𝐹𝐺  𝐴 
 𝑖𝑘 

   ×    𝐿𝑆𝑆𝐸 
 𝑖𝑘 

 2 

 𝑖 = 1 

 𝑁 

∑  𝐹𝐺  𝐴 
 𝑖𝑘 

    /     𝑁 

 where: 

 N = the cells where a player takes at least 1 FGA 

 LSSE  ik  = local SSE value for the cell 

 FGA  ik  = number of field goal attempts at the cell 
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 2.3.3  Lineups Points Lost 

 Sandholtz  (2019)  studied  shooting  efficiency  as  an  optimal  allocation  problem 

 by  comparing  the  shooter's  FG%  to  his  field  goal  attempt  (FGA)  rate  in  the  context  of 

 his  other  four  teammates  on  the  court  and  the  spatial  distribution  of  his  shots.  First, 

 the  court  was  divided  into  areas  by  applying  NMF.  The  FG%  of  players  in  each  of  the 

 spatial  bases  were  then  modelled.  A  conditionally  autoregressive  (CAR)  prior  on  the 

 players  loadings  or  basis  weights  in  W  was  used  to  “shrink  the  FG%  estimates  of 

 players  with  similar  shooting  characteristics  toward  each  other”.  The  players  in  a 

 five-man  lineup  were  then  ranked  based  on  how  well  they  scored  from  each  of  the 

 spatial  basis  vectors  computed  by  NMF.  Using  this  ranking,  a  value  was  calculated 

 corresponding  to  the  expected  number  of  points  scored  by  a  five-man  lineup  if  they 

 allocated  their  field  goals  in  an  area  according  to  the  ranks  of  the  players  in  that  area 

 (i.e.  the  best  shooter  takes  the  most  shots  and  the  worst  shooter  takes  the  least).  This 

 expected  value  was  then  subtracted  to  the  actual  number  of  points  scored  by  the 

 lineup  to  generate  the  metric  Lineup  Points  Lost  (LPL).  LPL  is  defined  as  the 

 difference  in  expected  points  between  a  lineups̓  actual  distribution  of  FG  attempts, 

 A  , and a proposed redistribution,  A  ∗  , that has perfect  rank correspondence. 

 Figure  2.6  shows  the  rank  correspondence  of  players  from  the  starting  lineup 

 of  the  2016  Cleveland  Cavaliers  at  different  areas  on  the  court.  A  positive  rank 

 correspondence  means  areas  of  under-utilization  while  negative  values  indicate 
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 potential  over-utilization.  A  +4  means  the  best  shooter  took  the  fewest  shots  in  the 

 area while a -4 means the worst shooter took the most shots in the area. 

 Figure 2.6 

 Rank correspondence surfaces for the Cleveland Cavaliersʼ starting lineup. 

 Note:  From  “Measuring  Spatial  Allocative  Efficiency  in  Basketball,”  by  N.  Sandholtz 

 et al., 2019, https://arxiv.org/abs/1912.05129v1. 

 Sandholtz  et  al.  (2019)  found  that  lower  LPL  is  associated  with  increased 

 offensive  production  but  cautioned  that  there  are  game  scenarios  where  minimizing 

 LPL  is  sub-optimal  especially  in  cases  where  there  are  confounding  variables  such 

 as  defensive  pressure,  expiring  shot  clock,  or  clutch  situations.  Strict  adherence  to 

 LPL  minimizing  could  also  lead  to  a  more  predictable  offense  and  thus  make  it 

 easier to defend. 
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 2.4  Hierarchical and high-resolution data models 

 Although  not  used  in  this  study,  hierarchical  models  have  also  been 

 developed that target increasingly context-specific scenarios in basketball. 

 Both  Franks  et  al.  (2015)  and  Cervone  et  al.  (2016)  utilized  hierarchical 

 logistic  regression  models  to  estimate  the  probability  of  making  a  shot  given 

 attributes  such  as  shooter  identity,  defender  distance,  and  shot  location.  Franks  et 

 al.  (2015)  also  used  a  hierarchical  multinomial  logistic  regression  to  “predict  who 

 will  take  and  where  a  shot  will  be  taken  given  defensive  matchup  information”  while 

 Cervone  et  al.  (2016)  used  the  Expected  Possession  Value  (EPV)  framework  and 

 introduced  the  concept  of  shot  satisfaction.  Shot  satisfaction  is  computed  using 

 several  contextual  information  such  as  shooter  identity  and  all  player  locations  and 

 abilities  to  indicate,  per  shot,  how  satisfied  a  player  was  with  his  decision  to  shoot. 

 Meanwhile,  Jiao  et  al.  (2020)  modeled  shooting  using  a  “Bayesian  joint  model  for  the 

 mark  and  the  intensity  of  marked  point  processes  where  the  intensity  is 

 incorporated in the mark model as a covariate.” 

 High-resolution  spatio-temporal  data  which  can  include  the  full 

 three-dimensional  trajectories  of  the  ball  while  being  shot  have  also  been  used  to 

 study  shooting.  Using  ball  tracking  data,  Marty  (2018)  and  Daly-Grafstein  &  Bornn 

 (2019)  were  able  to  show  that  the  optimal  entry  location  for  a  shot  is  about  2  inches 

 from  the  center  of  the  basket  at  an  entry  angle  of  about  45°.  Daly-Grafstein  &  Bornn 

 (2019)  utilized  a  technique  known  as  Rao-Blackwellization  (RB)  to  generate  lower 
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 error  estimates  of  shooting  skill  and  demonstrated  that  RB  estimates  were  better  at 

 predicting  the  three-point  percentages  of  players  from  limited  data  compared  to 

 empirical  make  percentages.  By  integrating  the  RB  approach  into  a  hierarchical 

 model,  they  were  able  to  achieve  further  variance  reduction.  Bornn  & 

 Daly-Grafstein  (2019)  extended  the  research  and  studied  the  effects  that  defenders 

 had on shot trajectories. 

 2.5  Summary 

 The research identified the following gaps in the literature: 

 1.  There  are  no  recent  studies  that  utilize  spatial  concepts  to  analyse  basketball 

 in the Philippines. 

 2.  There  is  no  readily  available  basketball  spatial  data  in  the  Philippines  that 

 can be used for analysis. 

 3.  Several  spatial  analysis  techniques  and  methodologies  have  been  developed 

 and  introduced  but  they  commonly  use  optical  tracking  data  not  available  in 

 the Philippines. 

 4.  Some  of  these  spatial  analysis  techniques  and  methodologies  can  be 

 modified  to  utilize  simpler  inputs  that  are  applicable  to  countries  like  the 

 Philippines that do not have the aforementioned optical tracking data. 
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 The research aims to address these gaps by: 

 1.  Generating  an  open  dataset  of  field  goal  locations  from  available  shot  chart 

 data online. 

 2.  Developing and releasing open source code for: 

 a.  the  generation  of  a  field  goal  dataset  based  on  online  shot  chart  data, 

 and 

 b.  the  spatial  analysis  of  the  generated  field  goal  dataset  using  modified 

 versions of previously introduced techniques and methodologies. 

 3.  Applying  the  metrics  developed  in  the  research  to  a  case  study  using 

 Philippine basketball data. 



 47 

 3.  Methodology 

 3.1  Scope and delimitation 

 The  research  dataset  included  the  field  goals  from  the  elimination  round 

 games  in  the  UAAP  MBT  Season  81  (AY  2018-2019).  The  data  was  sourced  from  FIBA 

 LiveStats  shot  charts  available  online  at  https://www.fibalivestats.com  .  The 

 information included in the dataset are: 

 ●  Location (x, y coordinates on the basketball court) 

 ●  Points (2 or 3) 

 ●  Made (1 or 0) 

 ●  Player Information (Name, Number, Team) 

 ●  Team Information (Name) 

 ●  Opposing Team Information (Name) 

 ●  Date & Venue 

 ●  Shot type 

 Free throws and missed shots due to fouls were not included in the analysis. 

https://www.fibalivestats.com/
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 Field  goal  location  was  the  only  variable  considered  for  shooting  tendency 

 and  ability.  Other  contextual  information  (covariates)  that  may  affect 

 shooting—player  height,  time  remaining  in  game,  type  of  shot,  whether  the  player  is 

 defended  or  not—were  not  considered  in  this  research  but  may  be  the  subject  of 

 further research into hierarchical spatial models of shooting in the UAAP. 

 3.2  The data 

 Shot  charts  for  UAAP  Season  81  are  available  online  from  the  FIBA  LiveStats 

 website  at  https://www.fibalivestats.com/u/UAAP/<gameid>/sc.html  where  <gameid> 

 is the identification code for a specific game during the season. 

 Although  the  data  exists,  there  were  some  issues  that  needed  to  be  addressed 

 before it became usable for the research: 

 1.  The  <gameids>  for the different UAAP games were not  known. 

 2.  The default formatting of the data wasnʼt suitable for the research. 

 a.  The data was in HTML. 

 b.  The  field  goal  locations  cover  the  whole  court  but  for  the  study  we 

 needed to map the shots to just a single half court. 

 3.  The positional accuracy of the field goal locations was not provided. 

 Figure 3.1 shows an example of the shot chart and underlying data. 

https://www.fibalivestats.com/u/UAAP/
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 Figure 3.1 

 Shot chart of NU vs UST UAAP MBT Game (Season 81) 

 Note:  The <gameid> is 936275. The field goal locations  for both teams are mapped to 

 the whole court (le� side) and the underlying data (right side) is available as HTML 

 text. Source:  https://www.fibalivestats.com/u/UAAP/936275/sc.html 

 To  get  the  data  from  FIBA  LiveStats  shot  charts  and  make  it  useable  for  the 

 purpose of the study, a web scraper was developed in Python that: 

 1.  Looked for the <gameid> of each UAAP MBT Season 81 game. 

 2.  For each game: 

 a.  extracted the information from the shot chart HTML 

 b.  mapped the location of the field goals into a single half court 

 3.  Saved the scraped data into a CSV file. 

https://www.fibalivestats.com/u/UAAP/936275/sc.html
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 The  resulting  file  was  a  field  goal  dataset  that  contained  the  information 

 mentioned in the previous section. 

 The resulting raw data included: 

 ●  7619 FGA 

 ●  55 games (1 missing game; 1st game of the season between UP and UE) 

 ●  120+ players 

 The scraper and dataset were both released freely and openly online at: 

 ●  FIBA LiveStats Shot Chart Scraper - 

 https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine 

 -basketball/tree/main/code 

 ●  UAAP MBT Season 81 Shot Chart Data - 

 https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine 

 -basketball/tree/main/data 

 As  mentioned  above,  UP  and  UE  are  both  missing  one  game—the  game  they 

 played  against  each  other  during  round  1  of  the  elimination  round  could  not  be 

 found  in  FIBA  LiveStats.  There  might  be  some  minute  differences  in  the  computed 

 statistics  if  that  game  was  included  but  they  are  not  expected  to  be  significant 

 enough to change the results of the analysis. 

https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball/tree/main/code
https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball/tree/main/code
https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball/tree/main/data
https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball/tree/main/data
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 Players  with  less  than  28  field  goal  attempts  (or  average  less  than  2  FGA/game 

 if  they  played  all  games)  were  removed  in  the  NMF  computations.  This  le�  a  total  of 

 7105  FGA  distributed  among  82  unique  players.  The  study  also  divided  the  regulation 

 FIBA  half-court,  a  14m  x  15m  rectangle,  into  50cm  x  50cm  cells.  It s̓  worth  noting 

 that  the  dimensions  of  the  UAAP  court  which  follow  FIBA  standards  are  slightly 

 different  than  those  used  in  the  NBA  (37�  x  50�  or  ~14.23m  x  15.4m).  It  is  assumed 

 that the 50cm  2  tile size captures all interesting  spatial variations in the data. 

 Figure  3.2  shows  a  sample  of  (a)  the  raw  data  mapped  onto  the  court  and  (b) 

 the corresponding raw field goal grids. 

 Figure 3.2 

 Map of the field goal (point) dataset and the field goal (discretized) grid 
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 3.3  Spatial characterization of field goals using NMF 

 Non-negative  Matrix  Factorization  (NMF)  was  used  to  determine  the  different 

 spatial  basis  and  individual  player  basis  loadings  based  on  the  collected  field  goal 

 dataset. 

 The  formula  for  NMF  is  given  in  (2.1)  and  the  general  steps  using  NMF  in 

 basketball is given in Section 2.2.1. 

 3.3.1  Finding the spatial basis and basis loadings 

 In  the  study,  the  court  was  discretized  into  50cm  x  50cm  cells  resulting  in  a 

 28  x  30  court  matrix.  A  subset  of  the  total  FG  dataset  was  used  for  the  computation  of 

 the  spatial  basis  vectors.  This  subset  included  players  with  at  least  28  total  field  goal 

 attempts—or  an  average  of  two  attempts  if  they  played  all  14  games—in  order  to 

 minimize  the  effects  of  players  with  low  number  of  field  goal  attempts  skewing  the 

 computation. 

 In  order  to  solve  V  =  WB  using  NMF,  the  number  of  output  bases,  K  ,  must  first 

 be  defined.  Franks  et  al.  (2015)  and  Sandholtz  et  al.  (2019)  looked  at  the  predictive 

 performance  of  NMF-LGCP  at  varying  K  against  independent  LGCP  using  a  10-fold 

 cross  validation.  This  study  used  a  simpler  approach  which  applied  the  elbow 

 method  on  the  residual  sum  of  squares  of  different  K  values  to  find  the  optimal 

 number  of  bases  or  latent  features  to  describe  the  dataset  as  suggested  by  Frigyesi 

 (2008). 
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 Aside  from  the  optimal  value  for  K  ,  results  of  using  different  models  and 

 initialization  modes  for  NMF  were  also  compared  to  determine  the  best  ones  to  use. 

 This  was  done  by  looking  at  which  combination  of  K,  model,  and  initialization 

 parameters  resulted  in  spatial  basis  vectors  that  made  the  most  sense  or  the  one  that 

 divided the court into visually-interpretable shot types. 

 Once  the  number  of  bases,  the  model,  and  the  initialization  method  were 

 identified, NMF was done using the field goal dataset, where, for each player k: 

 1.  A  field  goal  matrix  X  ki  was  generated  where  x  ki  =  the  number  of  field  goal 

 attempts by player  k  at cell  i  . 

 2.  An  intensity  surface  was  generated  by  fitting  X  ki  to  the  discretized  court λ
 𝑘 

 using Kernel Density Estimation. 

 3.  The  data  matrix  was  constructed  where  was  normalized  𝑉 =    (λ‾
 1 
...    , λ‾

 𝐾 
)

 𝑇 
λ‾

 𝑘 
   

 such that it had unit volume. 

 4.  The  optimization  problem  of  V  =  WB  was  solved  to  find  the  low-rank  matrices 

 W  and  B  . 

 B  was  mapped  to  show  the  spatial  bases  or  the  frequent  shooting  areas  on  the 

 court  based  on  the  field  goal  dataset.  W  was  then  used  to  rank  and  compare  how 

 frequent players take shots from these areas. 
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 3.3.2  Grouping similar players based on their shooting habits 

 Aside  from  ranking  and  comparing  the  shooting  frequency  of  players,  W  was 

 also  used  to  group  similar  players  based  on  their  shooting  habits.  The  individual  w  kb 

 values  in  W  represent  how  frequent  player  k  shoots  at  spatial  basis  b  .  For  each  player 

 k  ,  a  K-nearest-neighbor  algorithm  was  used  to  find  player  k  ̓s  5  nearest  neighbors.  To 

 enforce  symmetry  of  the  nearest-neighbor  relationship,  it  was  assumed  that  if 

 player  k  was a neighbor of player  l  then player  l  was also a neighbor of player  k  . 

 The  number  of  neighbors  and  the  average  distance  of  the  neighbors  were 

 also plotted to see how common or unique a player s̓ shooting habit is. 
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 3.4  Spatial metrics of shooting 

 Finding  the  spatial  basis  vectors  that  define  a  field  goal  dataset  is  good 

 especially  when  we  want  to  identify  the  common  shooting  areas  where  players  take 

 field  goals  but  there  is  also  value  in  dividing  the  court  into  a  regular  tessellation  or 

 grid for analysis. 

 Let s̓  say  the  court  has  been  divided  into  cells  and  we  want  to  represent 

 shooting  ability  and  performance  inside  a  cell.  There  are  two  ways  we  can  go  about 

 this—the  first  one  is  by  looking  at  the  success  rate  or  the  percentage  of  field  goals 

 that  a  player  makes  inside  the  cell  and  the  second  is  by  looking  at  the  average 

 number  of  points  that  a  player  scores  for  each  field  goal  attempt  inside  the  cell.  In  a 

 sense,  weʼre  choosing  between  Field  Goal  Percentage  (FG%)  or  Effective  Field  Goal 

 Percentage  (eFG%)  for  the  former  and  Points  Per  Attempt  (PPA)  for  the  latter.  In  this 

 research,  PPA  was  used  for  its  simplicity  and  the  elegance  of  its  computation.  PPA 

 inherently  accounts  for  the  difference  between  two-point  field  goals  and  three-point 

 field  goals,  an  advantage  it  shares  with  eFG%  over  FG%;  but  it  also  holds  an 

 advantage  over  eFG%  in  that  it  uses  a  more  understandable  unit  of  measure—points 

 per attempt instead of percentage. 
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 3.4.1  Modeling scoring ability 

 In  the  study,  the  offensive  half-court  was  divided  into  50cm  x  50cm  shooting 

 cells  resulting  in  a  28  x  30  grid  and  a  player s̓  scoring  ability  at  each  shooting  cell  was 

 modeled by considering two main variables. 

 1.  The expected points per attempt at the cell based on the league average. 

 2.  The points per attempt of the player at the cell. 

 Consider  that  there  exists  a  spatial  surface  overlying  the  offensive  half-court 

 that  represents  the  background  local  values  of  the  number  of  points  scored  per 

 attempt  at  that  location  on  the  court.  Although  these  local  values  cannot  be  directly 

 observed,  they  can  be  inferred  from  a  large  sample  of  field  goals.  This  sample,  K  , 

 can  include  all  the  field  goals  attempted  by  all  players  during  a  season  but  it  can  also 

 be  constrained  to  include  just  a  specific  set  of  field  goals  depending  on  the  analysis 

 and  evaluation  being  done.  For  example,  K  can  include  just  the  field  goals  against 

 specific  teams,  field  goals  during  a  specific  time  or  scenario  in  the  game,  field  goals 

 by  specific  players,  etc.  In  this  study,  K  is  the  set  of  field  goals  by  all  players  during 

 UAAP Season 81. 

 A  simple  and  intuitive  approach  to  estimate  these  background  values  is  to 

 divide  the  court  into  grids  and  compute  the  raw  points  per  attempt  scored  at  that 

 cell  (3.1).  Although  simple,  this  approach  is  problematic  because  at  cells  where 

 there  are  a  small  number  of  attempts  or  no  attempts  made  then  the  actual 

 background values are unlikely to be well-estimated. 
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 An  Empirical  Bayes  estimator  similar  to  that  used  by  Shortridge  et  al.  (2014) 

 was  used  in  this  study  but  instead  of  computing  for  the  expected  field  goal  rate,  this 

 study  proposes  to  compute  for  the  expected  Points  Per  Attempt  (PPA)  directly  using 

 the  EB  estimator.  This  approach  should  provide  better  values  for  pixels  divided  by 

 the  three  point  line  and  offer  a  more  elegant  solution  that  allows  for  different  kinds 

 of  cell  sizes  regardless  of  whether  they  divide  the  two-point  and  three-point  field 

 goals areas on the court perfectly. 

 The  EB  estimator  accounted  for  the  uncertainty  in  the  raw  PPA  for  cells  with 

 a  small  number  of  attempts  and  incorporated  the  PPA  at  nearby  and  equidistant 

 cells  as  the  prior  distribution  in  order  to  compute  the  expected  PPA  at  a  cell.  It 

 worked  under  the  assumption  that  players  score  in  a  similar  manner  in  an  area 

 around  a  location  as  well  as  in  other  areas  that  are  the  same  distance  from  the 

 basket  as  the  location.  In  a  sense,  there  was  also  an  assumption  that  shooting  ability 

 is  symmetric—i.e.  a  player s̓  shooting  ability  at  locations  d  meters  to  the  right  of  the 

 basket is similar to locations  d  meters to the le�  of the basket. 
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 Mathematically, the computation of the EB estimate PPA was: 

 1.  For each cell  i  , the raw PPA was computed using (3.1). 

 (3.1)  𝑃𝑃  𝐴 
 𝑖 
   =    

 𝑃𝑇  𝑆 
 𝑖 

 𝐹𝐺  𝐴 
 𝑖 

      

 where: 

 PTS  i  = the number of points scored at cell i 

 FGA  i  = the number of field goal attempts at cell i  . 

 2.  For  each  cell  i  ,  the  Empirical  Bayes  estimate  of  the  PPA  (  )  given  by  (3.4)  was θ
^

 𝑖 

 computed using a prior distribution (  j  ) which included: 

 a.  a 7x7 grid around cell  i  (< 1.5m from  i  ) 

 b.  cells that are equidistant from the basket 

 The  prior  mean  for  the  neighborhood  cells  j  of  cell  i  was  computed  using γ
 𝑖 

^

 (3.2) similar to Shortridge et al. (2014). 

 (3.2) γ
^

 𝑖 
   =    

∑ 𝑃𝑇  𝑆 
 𝑗 

∑ 𝐹𝐺  𝐴 
 𝑗 

      

 where: 

 PTS  j  = points scored at cell j 

 FGA  j  = field goal attempts at cell j 
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 The  prior  variance  for  the  neighborhood  cells  j  of  cell  i  was  computed φ
 𝑖 

^

 using (3.3) similar to Shortridge et al. (2014). 

 (3.3) φ
 𝑖 

^
   =    

∑ 𝑛 
 𝑗 
( 𝑝 

 𝑗 
−   γ

^

 𝑗 
) 2 

∑ 𝑛 
 𝑗 

   −    
γ
^

 𝑖 

 𝑛 ‾
 𝑗 

 where: 

 n  j  = number of shots taken at cell j 

 p  j  = the raw PPA observed at cell j 

 = the sample mean of the shots taken within  all neighborhood cells j  𝑛 ‾
 𝑗 

 The  weighting  factor  or  shrinking  factor  which  is  used  to  shrink  the  𝑊 
 𝑖 

^

 effects  of  the  prior  mean  in  the  EB  estimation  was  computed  using  (3.4)  similar  to 

 Shortridge et al. (2014). 

 (3.4)  𝑊 
^

 𝑖 
=

φ
^

 𝑖 

φ
^

 𝑖 
   +   γ

^

 𝑖 
    /     𝑛 

 𝑖 

 where: 

 = the prior mean γ
 𝑖 

^

 = the prior variance φ
 𝑖 

^

 n  i  = the number of field goal attempts at cell i 
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 Finally,  the  Empirical  Bayes  estimate  of  the  PPA  at  cell  i  (  )  was  computed θ
^

 𝑝𝑖 

 using (3.5) similar to Shortridge et al. (2014). 

 (3.5) θ
^

 𝑝𝑖 
=  𝑊 

^

 𝑖 
    𝑝 

 𝑖 
   +    ( 1    −     𝑊 

^

 𝑖 
)   γ

^

 𝑖 

 where: 

 = the weighting factor  𝑊 
 𝑖 

 p  j  = the raw PPA observed at cell i 

 = the prior mean (PPA) at cell i γ
^

 𝑖 

 For  a  player  k  ,  the  ELPTS  in  or  the  Expected  Local  Points  of  player  k  at  cell  i 

 was  computed  using  (3.6).  Because  PPA  was  used  instead  of  FG%,  there  was  no  need 

 to multiply the EB-estimated rate with the number of points a FG at cell  i  is worth. 

 (3.6)  𝐸𝐿𝑃𝑇  𝑆 
 𝑘𝑖 

=    θ
^

 𝑖 
   ×  𝐹𝐺  𝐴 

 𝑘𝑖 

 where: 

 = the EB estimate PPA for cell i    θ
 𝑖 

^

 FGA  ki  = the number of field goal attempts of player  k at cell i  . 

 The  total  expected  points  (  EPTS  k  )  that  a  player  k  will  score  based  on  his  field 

 goal  distribution  is  just  the  sum  of  all  ELPTS  ki  across  all  cells  i  where  player  k  has  at 

 least 1 FGA. 
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 Player  k  ̓s  Local  Points  Per  Attempt  (  LPPA  ki  )  at  cell  i  was  calculated  using  (3.7) 

 similar  to  Shortridge  et  al.  (2014).  LPPA  is  a  disaggregated  version  of  (3.2)  computed 

 on a per-cell basis. 

 (3.7)  𝐿𝑃𝑃  𝐴 
 𝑘𝑖 

   =    
 𝑃𝑇  𝑆 

 𝑘𝑖 

 𝐹𝐺  𝐴 
 𝑘𝑖 

      

 where: 

 PTS  ki  = the number of points scored by player k at  cell i 

 FGA  ki  = the number of field goal attempts off player  k at cell i  . 

 3.4.2  Spatial Scoring Effectiveness (SScE) 

 The  metric  Spatial  Scoring  Effectiveness  (  SScE  )  which  is  a  measure  of  scoring 

 effectiveness  based  on  the  spatial  distribution  of  field  goals  was  introduced  and 

 defined  as  the  difference  between  the  player s̓  points  per  attempt  (  PPA  n  )  given  by 

 (3.1)  and  the  expected  points  per  attempt  (  EPPA  n  ),  given  by  (3.8)  which  is  the  same  as 

 (2.6) by Shortridge et al. (2014). 

 (3.8)  𝐸𝑃𝑃  𝐴 
 𝑘 

=  𝑖 = 1 

 𝑁 

∑  𝐸𝐿𝑃𝑇  𝑆 
 𝑘𝑖 

 𝐹𝐺  𝐴 
 𝑘 

   

 where: 

 N = all the cells where player k had at least 1 FGA 

 FGA  k  = the total number of field goal attempts by  k anywhere on the court 
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 Similar  to  the  EPPS  metric  of  Shortridge  et  al.  (2014),  EPPA  is  a  summary 

 measure  characterizing  the  average  difficulty  of  the  spatial  distribution  of  player  k  ̓s 

 field  goals.  A  high  EPPA  indicates  a  player  takes  shots  at  easy  spots  on  the  court 

 while  a  low  EPPA  might  indicate  that  a  player  takes  shots  at  areas  that  are,  on 

 average, more difficult to score from. 

 The global SScE for player  k  was computed using (3.9). 

 (3.9)  𝑆𝑆𝑐  𝐸 
 𝑘 
   =     𝑃𝑃  𝐴 

 𝑘 
−  𝐸𝑃𝑃  𝐴 

 𝑘 

 This  global  SScE  value  is  a  metric  for  showing  how  much  more  or  less  a 

 player  is  scoring  per  field  goal  attempt  based  on  the  spatial  distribution  of  his  field 

 goals.  Positive  values  indicate  players  are  scoring  more  than  expected  while  negative 

 values indicate the opposite. 

 The  local  SScE  (  LSScE  ki  )  for  player  k  at  cell  i  was  computed  using  (3.10).  This  is 

 simply the difference between the  LPPA  of player  k  and the EB-estimate PPA at cell  i  . 

 (3.10)  𝐿𝑆𝑆𝑐  𝐸 
 𝑘𝑖 

   =     𝐿𝑃𝑃  𝐴 
 𝑘𝑖 

− θ
^

 𝑝𝑖 

 Because  the  LSScE  is  computed  on  a  per-cell  basis,  it  was  mapped  and  used  to 

 show  the  spatial  distribution  of  a  player s̓  SScE  —i.e.  at  what  areas  on  the  court  is  a 

 player scoring more or less than expected. 
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 3.4.3  Points Relative to League Average (PRLA) 

 The  metric  Points  Relative  to  League  Average  (PRLA)  was  introduced  and 

 defined  as  the  difference  between  the  points  scored  (  PTS  )  by  a  player  k  and  his 

 expected points scored based on the spatial distribution of field goals. 

 The global  PRLA  for player k was computed using (3.11). 

 (3.11)  𝑃𝑅𝐿  𝐴 
 𝑘𝑖 

=     𝑃𝑇  𝑆 
 𝑘 

−
 𝑖 = 1 

 𝑁 

∑  𝐸𝐿𝑃𝑇  𝑆 
 𝑘𝑖 

 where: 

 PTS  k  = the number of points scored by player k 

 N = all the cells where player k has at least 1 FGA 

 ELPTS  ki  = the expected local points of player k at  cell i 

 If  the  player  SScE  and  FGA  of  player  k  are  known,  then  the  global  PRLA  can 

 be computed using (3.12). 

 (3.12)  𝑃𝑅𝐿  𝐴 
 𝑘 

=     𝑆𝑆𝑐𝐸 
 𝑘 
   ×     𝐹𝐺𝐴 

 𝑘 

 This  global  PRLA  value  indicates  the  number  of  points  a  player  is  scoring 

 above  or  below  what s̓  expected  of  him  based  on  the  spatial  distribution  of  his  field 

 goals. 

 The  local  PRLA  (  LPRLA  )  for  player  k  at  cell  i  was  computed  using  (3.12).  This 

 was  simply  the  difference  between  the  points  scored  by  player  k  at  cell  i  and  the 

 expected points scored by player k at cell i. 
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 (3.13)  𝐿𝑃𝑅𝐿  𝐴 
 𝑘𝑖 

   =  𝑃𝑇  𝑆 
 𝑘𝑖 

   −     𝐸𝐿𝑃𝑇  𝑆 
 𝑘𝑖 

 where: 

 PTS  ki  = points scored by player k at cell i 

 ELPTS  ki  = expected points scored by player k at cell  i 

 If  the  LSSE  ki  and  FGA  ki  values  are  known  for  player  k  at  each  cell  i,  the  local 

 PRLA  can also be computed using (3.14). 

 (3.12)  𝐿𝑃𝑅𝐿  𝐴 
 𝑘𝑖 

=     𝑆𝑆𝑐𝐸 
 𝑘𝑖 

   ×     𝐹𝐺𝐴 
 𝑘𝑖 

 These  LPRLA  values  were  then  mapped  to  show  the  spatial  distribution  of  a 

 player s̓ PRLA. 

 3.4.4  Player analysis 

 Aside  from  the  global  and  local  values  of  SScE  and  PRLA,  player  Spread  and 

 Spread%  were  also  calculated  as  provided  in  (2.2).  The  scoring  area  is  defined  as  the 

 shooting  cells  with  at  least  1  FGA.  Instead  of  Range  and  Range%,  new  metrics  were 

 introduced  called  Effective  Range  (ERNG),  Net  Effective  Range  (NERNG),  Player 

 Effective Range% (PERNG), and Total Effective Range% (TERNG). 
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 Effective  Range  is  the  number  of  shooting  cells  where  a  player  has  a  positive 

 SScE  and  is  computed  using  (3.13).  This  provides  a  summary  value  of  how  large  an 

 area  on  the  court  a  player  scores  effectively  or  more  than  expected—the  larger  the 

 Effective  Range,  the  more  areas  on  the  court  a  player  scores  effectively.  Net  Effective 

 Range  is  the  Effective  Range  subtracted  by  the  number  of  shooting  cells  where  a 

 player  has  negative  SScE—i.e.  shooting  cells  where  a  player  scored  less  than 

 expected—and  is  computed  using  (3.14).  A  positive  Net  Effective  Range  means  that 

 there  are  more  shooting  cells  where  a  player  is  scoring  better  than  expected  than 

 shooting  cells  where  he  is  scoring  worse  than  expected.  A  negative  Net  Effective 

 Range  means  the  opposite:  that  a  player  is  scoring  worse  than  expected  in  more 

 shooting cells than he is scoring better than expected. 

 It s̓  good  to  look  at  Effective  Range  in  conjunction  with  Net  Effective  Range.  A 

 player  with  high  Effective  Range  but  negative  Net  Effective  Range  means  that  even 

 though  he  is  effective  at  a  lot  of  areas  on  the  court,  he  also  takes  shots  at  a  lot  of 

 areas  where  he  isnʼt  effective.  This  is  indicative  of  a  player  who  isnʼt  shy  at  taking  the 

 shot  anywhere  on  the  court.  Meanwhile,  a  player  with  a  low  Effective  Range  but  a 

 high  Net  Effective  Range  means  that  he  is  only  taking  shots  from  a  few  areas  on  the 

 court  but  he  is  effective  at  a  lot  of  them.  This  is  indicative  of  a  specialist  such  as  a 

 player  who  specializes  in  corner  3-pointers  or  points  at  the  rim—e.g.  dominant  big 

 men, a player who only scores on putbacks. 
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 (3.13)  𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒     𝑅𝑎𝑛𝑔𝑒 
 𝑘 

=    
 𝑖    ∈ 𝑁 
∑     𝐴 

 𝑖 

 where: 

 A  i  = 1 if SScE  i  > 0 in cell i, 0 otherwise 

 N = all shooting cells where player k has at least 1 FGA 

 𝑁𝑒𝑡     𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒     𝑅𝑎𝑛𝑔𝑒 =     𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒     𝑅𝑎𝑛𝑔𝑒    −
 𝑖    ∈ 𝑁 
∑     𝐵 

 𝑖 

 (3.14) 

 where: 

 B  i  = 1 if SScE <=0 in cell i, 0 otherwise 

 N = all shooting cells where player k has at least 1 FGA 

 Player  Effective  Range  %  and  Total  Effective  Range  %  are  essentially  a 

 proportion  of  the  Effective  Range  relative  to  a  defined  set  of  shooting  cells  or  area  on 

 the  court.  For  Player  Effective  Range  %,  this  set  of  shooting  cells  are  those  where  he 

 attempted  at  least  1  FGA.  Thus,  Player  Effective  Range  %  is  equal  to  a  player s̓ 

 Effective  Range  divided  by  his  Spread  as  shown  in  (3.15).  It  indicates  how  much  of 

 his  individual  scoring  area  he  is  effective  from.  Player  Effective  Range  %  is 

 conceptually  similar  to  Net  Effective  Range.  High  values  mean  that  a  player  is 

 effective  at  a  lot  of  the  areas  where  he  takes  a  field  goal  attempt  but  can  also  be 

 indicative  of  a  specialist—a  player  who  only  takes  shots  at  specific  locations  on  the 

 court.  Meanwhile,  Total  Effective  Range  %  is  equal  to  the  Effective  Range  divided  by 
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 the  total  number  of  cells  in  the  scoring  area  and  is  computed  using  (3.16).  It 

 indicates  how  much  of  the  court  a  player  scores  effectively  from.  Similar  to  Effective 

 Range  and  Net  Effective  Range,  Player  Effective  Range  %  and  Total  Effective  Range 

 %  should  also  be  taken  in  conjunction  with  each  other.  For  example,  between  two 

 players  with  the  same  or  similar  Player  Effective  Range  %,  the  player  with  the  larger 

 Total  Effective  Range  %  is  effective  at  more  locations  on  the  court  than  the  other 

 player.  Meanwhile,  between  two  players  with  the  same  or  similar  Total  Effective 

 Range  %,  the  player  with  a  lower  Player  Effective  Range  %  is  taking  more  field  goals 

 at locations where he isnʼt effective. 

 𝑃𝑙𝑎𝑦𝑒𝑟     𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒     𝑅𝑎𝑛𝑔𝑒  %    
 𝑘 

=
 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒     𝑅𝑎𝑛𝑔𝑒 

 𝑘 

    𝑆𝑝𝑟𝑒𝑎𝑑 
 𝑘 

 (3.15) 

 where: 

 Effective Range  k  = Effective Range of player k 

 Spread  k  = Spread of player k 

 𝑇𝑜𝑡𝑎𝑙     𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒     𝑅𝑎𝑛𝑔𝑒  %    
 𝑘 

=
 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒     𝑅𝑎𝑛𝑔𝑒 

 𝑘 

 𝑁 
 (3.16) 

 where: 

 Effective Range  k  = Effective Range of player k 

 N = # of shooting cells in the league shooting area 



 69 

 3.4.5  Team analysis, Team opponentsʼ analysis, NetSScE, and NetPRLA 

 For  a  team  m  ,  team-wide  SScE  and  PRLA  were  introduced  and  computed  by 

 applying  the  SScE  and  PRLA  formulas  to  the  team's  entire  field  goal  dataset.  These 

 values indicated the scoring effectiveness of a team at different areas on the court. 

 The  metrics  oppSSE  and  oppPRLA  were  also  introduced  and  computed  by 

 applying  the  team-wide  SScE  and  PRLA  formulas  to  the  field  goal  dataset  of  team  m  ̓s 

 opponents.  These  values  indicated  the  defensive  ability  of  a  team  or  how  well  they 

 limited the scoring effectiveness of their opponents at different areas on the court. 

 Local  values  of  team-wide  SScE,  PRLA,  oppSScE,  and  oppPRLA  were  also 

 computed and mapped. 
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 3.4.6  Assessment and evaluation of SScE and PRLA 

 The  study  used  the  same  weighted  t-test  provided  by  equations  (2.8),  (2.9), 

 and  (2.10)  as  utilized  by  Shortridge  et  al.  (2014)  to  assess  and  evaluate  SScE.  Paired 

 weighted  t-test  was  done  to  determine  if  there  was  significant  difference  between 

 the  expected  and  observed  points  scored  by  individual  players  and  teams  as  well  as 

 to  compute  for  the  confidence  interval  of  the  SScE.  Unpaired  weighted  t-test  was 

 used to compare the SScE of two players and teams. 

 The  top  and  bottom  players  in  terms  of  metrics  introduced  in  this  study 

 values  were  analysed  and  compared.  The  same  was  done  for  the  Final  Four  and 

 non-Final Four teams. 

 Lastly,  the  correlation  between  the  metrics  introduced  in  this  study  with 

 other conventional statistics were also computed. 
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 3.5  Case study: the UAAP MBT 2018-2019 (Season 81) 

 The  new  metrics  introduced  in  this  study  were  used  to  analyze  the  field  goals 

 during the UAAP MBT 2018-2019 Season 81. 

 Data  was  obtained  from  scraping  the  FIBA  LiveStats  website  using  Python  3.8 

 (Python  So�ware  Foundation,  2021),  JupyterLab  2.1.2  (Project  Jupyter,  2021),  and  the 

 BeautifulSoup (Richardson, 2021) and requests (Reitz, 2021) libraries. 

 Analysis  and  visualization  was  conducted  using  R  4.1  (R  Core  Team,  2021) 

 and  RStudio  (RStudio  Team,  2021)  with  nmf  (  Gaujoux  R.  and  Seoighe  C.,  2010  ) 

 library.  Python  was  also  used  with  numpy  (Harris  et  al.,  2020),  scipy  (Virtaten  et  al., 

 2020),  scikit-learn  (Pedragosa,  2011),  pandas  (McKinney,  2010),  and  matplotlib 

 (Hunter,  2007).  Other  analysis  and  visualization  were  done  with  QGIS  3.20-3.22 

 (QGIS.org, 2021). 

 The  computer  used  for  processing  runs  on  a  64-bit  Pop!  OS  operating  system 

 with  32GB  of  RAM,  6GB  RTX  2060  graphics  card,  and  Intel®  Core™  i7-9750H  CPU  @ 

 2.60GHz × 12 cores. 

 The data and code are all available at: 

 https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basket 

 ball 

https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball
https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball
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 4.  Results and Discussion 

 This  part  of  the  research  will  present  the  results  obtained  from  computing 

 spatial  metrics  for  UAAP  Season  81  and  discuss  their  applications  in  analyzing 

 player and team performance. 

 4.1  Conventional shooting statistics 

 Table  4.1  shows  the  conventional  shooting  statistics  (FG%,  2P%,  3P%,  eFG, 

 PPA)  of  the  teams  and  their  opponents  during  UAAP  Season  81.  These  team-wide 

 conventional  shooting  statistics  provide  an  overview  of  the  shooting  performance  of 

 teams  in  Season  81.  For  example,  let s̓  compare  the  two  teams  that  met  in  the  Finals 

 that  year:  the  ADMU  Blue  Eagles  and  the  UP  Fighting  Maroons.  By  looking  at  the 

 PPA  and  opp_PPA  of  the  two  teams,  we  can  say  that  both  have  efficient  offenses  with 

 UP  ranking  1st  in  points  scored  per  attempt  (0.994)  and  ADMU  ranking  3rd  (0.920) 

 but  there  was  a  significant  difference  in  their  defense  with  ADMU  allowing  the  least 

 number of points per attempt (0.814) and UP lagging behind ranking 6th (0.942). 
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 Table 4.1 

 Conventional shooting statistics of teams for UAAP Season 81. 
 2P = 2-point field goals made; 2PA = 2-point field goals attempted; 2P% = 2P/2PA 
 3P = 3-point field goals made; 3PA = 3-point field goals attempted; 3P% = 3P/3PA 
 FG = total field goals made; FGA = total field goals attempted; FG% = FG/FGA 
 eFG = effective field goal percentage = (FG + 0.5*3P)/FGA 
 PPA = points per attempt = total points scored / FGA 
 opp_* = statistics by team opponents 

 team  2P  2PA  2P%  3P  3PA  3P%  FG  FGA  FG% 

 ADMU  288  584  49.3  115  417  27.6  403  1001  40.3 

 ADU  297  679  43.7  88  302  29.1  385  981  39.2 

 DLSU  300  665  45.1  85  294  28.9  385  959  40.1 

 FEU  272  590  46.1  115  342  33.6  387  932  41.5 

 NU  295  671  44.0  79  297  26.6  374  968  38.6 

 UE  288  638  45.1  81  333  24.3  369  971  38.0 

 UP  363  697  52.1  88  299  29.4  451  996  45.3 

 UST  210  527  39.8  121  421  28.7  331  948  34.9 

 team  opp_ 
 2P 

 opp_ 
 2PA 

 opp_ 
 2P% 

 opp_ 
 3P 

 opp_ 
 3PA 

 opp_ 
 3P% 

 opp_ 
 FG 

 opp_ 
 FGA 

 opp_ 
 FG% 

 ADMU  258  592  43.6  70  300  23.3  328  892  36.8 

 ADU  271  646  42.0  81  291  27.8  352  937  37.6 

 DLSU  264  616  42.9  101  383  26.4  365  999  36.5 

 FEU  279  614  45.4  104  370  28.1  383  984  38.9 

 NU  310  655  47.3  97  361  26.9  407  1016  40.1 

 UE  290  610  47.5  125  363  34.4  415  973  42.7 

 UP  287  620  46.3  108  333  32.4  395  953  41.4 

 UST  354  698  50.7  86  304  28.3  440  1002  43.9 
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 team  eFG  PPA  opp_ 
 eFG 

 opp_ 
 PPA 

 net_ 
 PPA 

 ADMU  46.0  0.920  40.7  0.814  0.106 

 ADU  43.7  0.875  41.9  0.838  0.037 

 DLSU  44.6  0.892  41.6  0.832  0.060 

 FEU  47.7  0.954  44.2  0.884  0.070 

 NU  42.7  0.854  44.8  0.897  -0.042 

 UE  42.2  0.843  49.1  0.982  -0.138 

 UP  49.7  0.994  47.1  0.942  0.052 

 UST  41.3  0.826  48.2  0.964  -0.138 

 Note  : Data includes the UP-UE game without a shot  chart/spatial data. Check the 

 glossary (Appendix 1) for the definition of the statistics. 

 Table  4.2  shows  the  conventional  shooting  statistics  (FG,  2P,  3P,  EFG,  PPA)  of 

 the  top  three  players  per  team  with  the  most  number  of  field  goal  attempts  during 

 UAAP  Season  81.  An  interesting  thing  to  note  in  Table  4.2  is  the  distribution  of  field 

 goals  by  the  top  three  players  with  the  most  number  of  attempts  per  team.  ADMU s̓ 

 three  players  with  the  most  attempts—Thirdy  Ravena,  Ange  Kouame,  and  Raffy 

 Verano—only  accounted  for  36.7%  of  the  teams̓  total  number  of  field  goals.  This  is 

 the  least  among  the  eight  teams.  In  comparison,  UP s̓  top  three  players  with  the 

 most  field  goal  attempts—Juan  Gomez  de  Liaño,  Bright  Akhuetie,  and  Paul 

 Desiderio—accounted  for  57.3%  of  the  teams̓  total  field  goal  attempts  which  is  the 

 2nd  most  among  all  the  teams.  This  indicates  that  ADMU  did  not  rely  that  heavily  on 

 Ravena,  Kouame,  and  Verano  for  taking  field  goals  and  that  scoring  opportunities 
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 were  more  distributed  among  the  other  players  of  the  team.  Meanwhile,  UP  favored 

 having Juan GDL, Akhuetie, and Desidero take a majority of the teams field goals. 

 Table 4.2 

 Conventional shooting statistics of top 3 players with the most field goal attempts per team 
 for UAAP Season 81 
 2P = 2-point field goals made; 2PA = 2-point field goals attempted; 2P% = 2P/2PA 
 3P = 3-point field goals made; 3PA = 3-point field goals attempted; 3P% = 3P/3PA 
 FG = total field goals made; FGA = total field goals attempted; FG% = FG/FGA 
 %FG = percentage of teamʼs FGA that the player takes 
 eFG = effective field goal percentage = (FG + 0.5*3P)/FGA 
 PPA = points per attempt = total points scored / FGA 

 player  team  FG  FGA  FG%  %FG  eFG  PPA 

 T. Ravena  ADMU  54  139  38.8  13.9  43.5  0.871 

 A. Kouame  ADMU  80  132  60.6  13.2  61.0  1.220 

 R. Verano  ADMU  40  96  41.7  9.6  45.8  0.917 

 J. Ahanmisi  ADU  86  194  44.3  19.8  54.6  1.093 

 S. Manganti  ADU  71  172  41.3  17.5  45.6  0.913 

 P. Sarr  ADU  54  146  37.0  14.9  37.0  0.740 

 A. Melecio  DLSU  78  203  38.4  21.2  46.3  0.926 

 J. Baltazar  DLSU  71  149  47.7  15.5  48.3  0.966 

 L. Santillian  DLSU  61  141  43.3  14.7  45.4  0.908 

 H. Cani  FEU  49  120  40.8  12.9  45.4  0.908 

 W. Comboy  FEU  42  119  35.3  12.8  42.9  0.857 

 A. Tolentino  FEU  51  117  43.6  12.6  54.3  1.085 
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 D. Ildefonso  NU  80  195  41.0  20.1  46.9  0.938 

 J. Clemente  NU  65  165  39.4  17.0  48.8  0.976 

 S. Ildefonso  NU  32  90  35.6  9.3  36.1  0.722 

 A. Pasaol  UE  130  312  41.7  32.1  45.7  0.913 

 P. Manalang  UE  47  147  32.0  15.1  37.1  0.741 

 J. Varilla  UE  41  120  34.2  12.4  39.6  0.792 

 Ju. Gomez de Liaño  UP  84  189  44.4  19.0  51.3  1.026 

 B. Akhuetie  UP  112  188  59.6  18.9  59.6  1.191 

 P. Desiderio  UP  77  194  39.7  19.5  46.1  0.923 

 R. Subido  UST  62  197  31.5  20.8  42.1  0.843 

 M. Lee  UST  59  176  33.5  18.6  46.0  0.920 

 C. Cansino  UST  51  115  44.3  12.1  50.4  1.009 

 player  team  2P  2PA  2P%  3P  3PA  3P% 

 T. Ravena  ADMU  41  92  44.6  13  47  27.7 

 A. Kouame  ADMU  79  121  65.3  1  11  9.1 

 R. Verano  ADMU  32  72  44.4  8  24  33.3 

 J. Ahanmisi  ADU  46  99  46.5  40  95  42.1 

 S. Manganti  ADU  56  106  52.8  15  66  22.7 

 P. Sarr  ADU  54  144  37.5  0  2  0.0 

 A. Melecio  DLSU  46  111  41.4  32  92  34.8 

 J. Baltazar  DLSU  69  129  53.5  2  20  10.0 

 L. Santillian  DLSU  55  116  47.4  6  25  24.0 

 H. Cani  FEU  38  79  48.1  11  41  26.8 
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 W. Comboy  FEU  24  61  39.3  18  58  31.0 

 A. Tolentino  FEU  26  58  44.8  25  59  42.4 

 D. Ildefonso  NU  57  110  51.8  23  85  27.1 

 J. Clemente  NU  34  78  43.6  31  87  35.6 

 S. Ildefonso  NU  31  82  37.8  1  8  12.5 

 A. Pasaol  UE  105  208  50.5  25  104  24.0 

 P. Manalang  UE  32  85  37.6  15  62  24.2 

 J. Varilla  UE  28  62  45.2  13  58  22.4 

 Ju. Gomez de Liaño  UP  58  111  52.3  26  78  33.3 

 B. Akhuetie  UP  112  185  60.5  0  3  0.0 

 P. Desiderio  UP  52  105  49.5  25  89  28.1 

 R. Subido  UST  20  69  29.0  42  128  32.8 

 M. Lee  UST  15  38  39.5  44  138  31.9 

 C. Cansino  UST  37  77  48.1  14  38  36.8 

 Note  : Data includes the UP-UE game without a shot  chart/spatial data. Check the 

 glossary (Appendix 1) for the definition of the statistics. 

 As  useful  as  the  information  provided  by  the  conventional  statistics  shown  in 

 Tables  4.1  and  4.2  are,  they  still  do  nothing  to  give  insight  as  to  how  these  teams  and 

 players  performed  at  specific  areas  on  the  court.  For  that,  we  go  to  the  spatial 

 shooting statistics. 
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 4.2  The spatial field goal dataset 

 To  recap,  the  raw  data  extracted  from  FIBA  LiveStats  included  7619  FGA 

 distributed  among  55  games  (1  missing  game;  1st  game  of  the  season  between  UP 

 and  UE)  and  123  unique  players.  The  court  was  divided  into  a  50cm  x  50cm  grid 

 consisting  of  840  shooting  cells.  The  7619  FGA  of  UAAP  Season  81  were  distributed 

 among  587  unique  shooting  cells  of  the  said  grid.  These  587  shooting  cells  were 

 defined as the scoring area. 

 Figure  4.1  shows  the  field  goal  distribution  map  and  the  corresponding  field 

 goal  grids  for  each  of  the  UAAP  teams.  These  maps  already  provide  more  nuance 

 and  information  about  the  shooting  tendencies  of  UAAP  teams  compared  to  the 

 conventional  shooting  statistics  shown  in  Table  4.1.  For  example,  the  maps  show  us 

 that  UP  attempted  shots  close  to  the  basket  more  than  any  other  team.  Another 

 observation  is  that  the  corner  three-pointer—touted  as  one  of  the  most  efficient 

 shots  in  basketball—wasnʼt  widely  used  that  season  with  FEU  and  UST  as  the  only 

 teams that showed prominent use of the shot. 
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 ADMU 

 ADU 



 80 

 DLSU 

 FEU 



 81 

 NU 

 UE 



 82 

 UP 

 UST 

 Figure 4.1 

 Maps of the team field goal (point) datasets and the team field goal (discretized) grids 
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 Aside  from  showing  the  spatial  distribution  of  shots,  the  spatial  field  goal 

 dataset  can  also  show  the  spatial  distribution  of  points  scored  by  each  team.  Figure 

 4.2  shows  the  Range  maps  of  the  UAAP  teams.  The  team  Range  maps  provide  more 

 context  about  the  shooting  performance  of  teams  compared  to  the  conventional 

 statistics  in  Table  4.1.  We  can  see  that  both  ADMU  and  UP  attempted  and  converted 

 a  high  number  of  field  goals  close  to  the  basket  evidenced  by  the  large  red  hexagons 

 near  the  basket  in  their  Range  maps.  Both  teams  also  avoided  taking  mid-range  field 

 goals  but  ADMU  appeared  to  be  more  willing  to  take  three  pointers  than  UP.  UST  is 

 also  an  interesting  case.  The  team  attempted  and  scored  the  least  amount  of  field 

 goals  near  the  basket  but  attempted  and  scored  more  than  the  other  teams  from 

 corner,  wing,  and  top  of  the  key  three-pointers—an  indication  that  the  team  was 

 highly dependent on these three areas rather than the paint for their scoring. 

 ADMU  ADU 
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 DLSU  FEU 

 NU  UE 
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 UP  UST 

 Figure 4.2 

 Range of the teams in UAAP Season 81 

 Note:  The size of the hexagon pertains to the number  of field goals attempted in the 

 area while the color pertains to the points scored per attempt. 

 The  next  sections  will  show  the  spatial  basis  vectors  and  the  SScE  and  PRLA 

 metrics computed from the spatial field goal dataset. 

 4.3  The spatial basis vectors of field goals 

 Using  the  spatial  field  goal  dataset,  the  spatial  basis  vectors  and  their 

 corresponding  basis  weights  were  computed  using  the  NMF  formula  given  in  (2.1) 

 and the general steps outlined in section 3.3.1. 
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 First  the  optimal  number  of  ranks  was  estimated.  Figure  4.3  shows  the 

 graphs  of  the  different  measures  at  varying  values  of  K  (1-6,  1-10,  1-15)  using  the 

 Kullback-Leibler model at 30 runs and using a random seed of 42. 

 (a) K=1-6, model=KL, run=30, seed=42, y=random data 
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 (b) K=1-10, model=KL, run=30, seed=42, y=random data 

 (c) K=1-15, model=KL, run=30, seed=42, y=random data 

 Figure 4.3 

 Measures of NMF at varying values of K 

 Looking  at  the  different  measures  computed  from  the  field  goal  dataset  and 

 referring  to  the  methods  introduced  by  Brunet  (2004),  Hutchins  (2008),  and  Frigyesi 

 (2008),  it  can  be  inferred  that  the  optimal  number  of  bases  for  the  field  goal  dataset 

 is from 3-5. 

 Next,  the  different  models  and  initialization  modes  were  compared.  Figure 

 4.4  shows  the  comparison  of  the  measures  of  the  Kullback-Leibler  and  Frobenius 

 models using the same parameters as above. 
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 Figure 4.4 

 Measures of NMF for the Kullback-Leibler and Frobenius models at K = 3, 4, 5 

 Aside  from  just  numerical  measures,  it  is  also  important  to  ensure  that  the 

 spatial  basis  vectors  resulting  from  the  NMF  decomposition  correspond  to  visually 

 interpretable  shot  types.  Figures  4.5-4.7  show  the  resulting  spatial  basis  vectors  for 

 different combinations of K, model, solver, and initialization methods. 
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 (a) Kullback-Leibler, K=3, solver=multiplicative update, init=None 

 (b) Kullback-Leibler, K=3, solver=multiplicative update, init=nndsvda 

 (c) Frobenius, K=3, solver=multiplicative update, init=None 

 (d) Frobenius, K=3, solver=multiplicative update, init=nndsvda 
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 (e) Frobenius, K=3, solver=coordinate descent, init=None 

 (f) Frobenius, K=3, solver=coordinate descent, init=nndsvd 

 (g) Frobenius, K=3, solver=coordinate descent, init=nndsvda 

 Figure 4.4 

 Resulting basis vectors from NMF using K = 3; model = Kullback-Leibler or Frobenius; 

 solver = coordinate descent or multiplicative update; and init = None, nndsvd, or nndsvda 
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 (a) Kullback-Leibler, K=4, solver=multiplicative update, init=None 

 (b) Kullback-Leibler, K=4, solver=multiplicative update, init=nndsvda 

 (c) Frobenius, K=4, solver=multiplicative update, init=None 

 (d) Frobenius, K=4, solver=multiplicative update, init=nndsvda 
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 (e) Frobenius, K=4, solver=coordinate descent, init=None 

 (f) Frobenius, K=4, solver=coordinate descent, init=nndsvd 

 (g) Frobenius, K=4, solver=coordinate descent, init=nndsvda 

 Figure 4.6 

 Resulting basis vectors from NMF using K = 4; model = Kullback-Leibler or Frobenius; 

 solver = coordinate descent or multiplicative update; and init = None, nndsvd, or nndsvda 
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 (a) Kullback-Leibler, K=5, solver=multiplicative update, init=None 

 (b) Kullback-Leibler, K=5, solver=multiplicative update, init=nndsvda 

 (c) Frobenius, K=5, solver=multiplicative update, init=None 

 (d) Frobenius, K=5, solver=multiplicative update, init=nndsvda 
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 (e) Frobenius, K=5, solver=coordinate descent, init=None 

 (f) Frobenius, K=5, solver=coordinate descent, init=nndsvd 

 (g) Frobenius, K=5, solver=coordinate descent, init=nndsvda 

 Figure 4.7 

 Resulting basis vectors from NMF using K = 5; model = Kullback-Leibler or Frobenius; 

 solver = coordinate descent or multiplicative update; and init = None, nndsvd, or nndsvda 



 95 

 The  following  observations  were  made  based  on  the  outputs  of  different 

 combinations of K, model, solver, and initialization methods: 

 1.  The  resulting  basis  vectors  are  more  or  less  similar  for  the  same  value  of  K 

 regardless  of  the  model  ,  solver  ,  and  initialization  parameter  used.  There  is 

 always  a  basis  for  field  goals  near  the  basket  (  Component  0  for  K=3,4,5  ), 

 three-pointers  (  Component  1  for  K=3,4;  Component  1  and  4  for  K=5  ),  and 

 mid-range shots (  Component 2 for K=3,4,5  ). 

 2.  The  results  of  init=nndsvd  or  init=nndsvda  are  nearly  identical  when  the  same 

 model  and  solver  are  used  as  shown  in  Figure  4.5  (f)  and  (g),  Figure  4.6  (f) 

 and (g), and Figure 4.7 (f) and (g). 

 3.  Using  solver=multiplicative  update  results  in  denser  bases  compared  to  using 

 solver=coordinate descent  . 

 4.  At  K=3  (Figure  4.5)  and  K=4  (Figure  4.6)  ,  the  main  difference  between  the 

 computed  spatial  basis  vectors  is  that  the  "mid-range  basis  vectors" 

 (  Component  2  )  computed  by  the  Kullback-Leibler  (KL)  model  are  denser  than 

 those computed using the Frobenius model. 

 5.  Similar  to  the  findings  of  Miller  (2014),  at  K=5  (Figure  4.7)  ,  the  KL  model 

 resulted  in  more  "spatially  diverse"  basis  vectors  compared  to  those 

 computed  using  the  Frobenius  model.  The  mid-range  shots  outside  the  paint 

 (  Component  2  )  are  more  pronounced  in  the  outputs  of  KL  (  a,  b  )  and  are 

 understated in those of Frobenius (  c, d, e, f, g  ). 
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 6.  The  resulting  basis  vectors  from  the  Frobenius  model  appear  to  be  more 

 focused  on  high-intensity  areas  of  field  goal  attempts  as  observed  when 

 comparing  Component  3  obtained  using  KL  and  Frobenius.  Component  3  in  KL 

 includes  locations  outside  of  the  restricted  area  while  the  same  component  in 

 Frobenius computations only include areas in the restricted area of the paint. 

 Based  on  the  considerations  that  NMF  should  provide  a  good  parts-based 

 decomposition  of  the  field  goal  dataset  and  avoid  overfitting,  Figure  4.7  (b)  was 

 chosen as the combination to use in the research because: 

 1.  it  separates  the  corner  three-pointers  (  Component  4  )  from  the  other 

 three-pointers (  Component 1  ); 

 2.  it does not understate the mid range field goals (  Component  2  ). 

 The parameters for Figure 4.7 (b) are: 

 ●  model/loss function:  Kullback-Leibler 

 ●  K / factorization rank:  5 

 ●  solver:  multiplicative update 

 ●  init:  nndsvda  or Non-negative Double Singular Value  Decomposition 

 (NNDSVD) initialization with zeros filled with the average of the non-negative 

 matrix V 
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 Figure  4.8  shows  the  spatial  basis  vectors  of  the  field  goal  dataset  and  their 

 corresponding “shot types”. 

 (a)  restricted area / at-rim  (b)  wing + key three-pointers 

 (c)  mid-range + some paint  (d)  le�-block + some paint 
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 (e)  corner three-pointers 
 + some wing three-pointers 

 Figure 4.8 

 The spatial basis vectors of the field goal dataset and their corresponding shot types 

 Player-specific  basis  weights  computed  by  NMF  provide  a  concise 

 characterization  of  a  player s̓  shooting  habits  as  these  weights  correspond  to  the 

 frequency  by  which  the  player  takes  certain  types  of  field  goals.  Table  4.3  compares 

 the  normalized  basis  weights  of  the  top  20  players  with  the  most  number  of  field 

 goal attempts from UAAP Season 81. 
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 1  A. Pasaol  0.47  0.27  0.11  0.00  0.14 

 2  A. Melecio  0.18  0.27  0.20  0.12  0.22 

 3  R. Subido  0.08  0.41  0.12  0.10  0.29 

 4  D. Ildefonso  0.31  0.26  0.11  0.09  0.22 

 5  J. Ahanmisi  0.04  0.32  0.16  0.36  0.12 

 6  Ju. Gomez 
 de Liaño  0.26  0.21  0.21  0.06  0.27 

 7  B. Akhuetie  0.94  0.00  0.03  0.00  0.03 

 8  P. Desiderio  0.29  0.26  0.07  0.11  0.28 

 9  M. Lee  0.05  0.25  0.07  0.06  0.57 

 10  S. Manganti  0.27  0.15  0.14  0.19  0.25 

 11  J. Clemente  0.24  0.28  0.12  0.00  0.35 

 12  J. Baltazar  0.43  0.13  0.19  0.25  0.00 

 13  P. Sarr  0.49  0.00  0.26  0.24  0.01 

 14  L. Santillian  0.44  0.17  0.20  0.19  0.00 

 15  T. Ravena  0.49  0.42  0.09  0.01  0.00 

 16  P. Manalang  0.38  0.39  0.07  0.05  0.12 

 17  A. Kouame  0.78  0.08  0.03  0.11  0.00 

 18  A. Caracut  0.20  0.23  0.20  0.25  0.12 

 19  H. Cani  0.22  0.15  0.29  0.09  0.26 

 20  W. Comboy  0.12  0.22  0.12  0.29  0.26 

 Mean  0.35  0.20  0.15  0.12  0.18 

 Table 4.3 

 Normalized player weights for each basis for the top 20 players with the most field goal 

 attempts from UAAP Season 81 
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 Note:  The dataset of normalized basis weights for all players can be found at: 

 https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basket 

 ball/blob/main/outputs/spatial-basis/nmf_weights-players-retained.csv 

 Highlighted  values  in  Table  4.3  indicate  weights  that  are  greater  than  the 

 mean  for  the  corresponding  spatial  basis  and  reveal  the  general  type  of  shooter  a 

 player is. In broad strokes, we can identify several types of shooters: 

 ●  Three-point  specialists  are  those  with  high  weights  for  Components  1  and  4. 

 Players  such  as  R.  Subido  (UST),  M.  Lee  (UST),  J.  Clemente  (NU)  are 

 examples. 

 ●  Players  who  only  take  shots  near  the  basket  are  those  with  unusually  high 

 weights  for  Component  0.  Players  like  B.  Akhuetie  (UP)  and  A.  Kouame 

 (ADMU) fit the bill. 

 ●  Scorers  who  attack  the  basket  or  take  wing/key  three-pointers  are  those  with 

 high  weights  for  Components  0  and  1.  This  includes  A.  Pasaol  (UE),  T.  Ravena 

 (ADMU), and P. Manalang (UE). 

 ●  Two-point  scorers  who  have  high  weights  for  Components  0,  2,  and  3  such  as 

 J. Baltazar (DLSU), P. Sarr (ADU), and L. Santillan (DLSU). 

 These player types correspond to general intuitions about player shooting 

 habits while also providing more context. 

https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball/blob/main/outputs/spatial-basis/nmf_weights-players-retained.csv
https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball/blob/main/outputs/spatial-basis/nmf_weights-players-retained.csv
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 4.4  Groups of players with similar shooting habits 

 Players  with  similar  shooting  habits  were  determined  by  computing  the 

 Euclidean  distance  of  the  player  basis  weights.  Using  this  distance,  a  player s̓  five 

 nearest  neighbors  were  identified.  If  player  k  is  the  neighbor  of  player  l  ,  it  is 

 assumed  that  player  l  is  also  a  neighbor  of  player  k  to  enforce  symmetry.  Table  4.4 

 shows  the  nearest  neighbors  of  the  top  20  players  with  the  most  field  goal  attempts 

 in UAAP Season 81. 

 Table 4.4 

 Top  20  players  with  the  most  field  goal  attempts  and  the  players  with  similar  shooting 

 habits 

 #  Player  Similar Players 

 1  A. Pasaol  A. Diputado, W. Navarro, P. Manalang, R. Escoto, C. Conner, 
 T. Ravena, J. Manzo, Ja. Gomez de Liaño 

 2  A. Melecio  J. Manuel, Ju. Gomez de Liaño, J. Varilla, D. Ildefonso, H. 
 Cani, R. Subido, A. Caracut, W. Comboy, M. Aquino 

 3  R. Subido  J. Mendoza, A. Wong, A. Melecio, J. Varilla, D. Dario, K. 
 Zamora, T. Tio, A. Inigo 

 4  D. Ildefonso  P. Desiderio, Ju. Gomez de Liaño, W. Navarro, J. Cullar, S. 
 Manganti, A. Melecio, F. Serrano, C. Conner, J. Lastimosa, 
 M. Nieto, C. Vito 

 5  J. Ahanmisi  W. Comboy, T. Tio, A. Caracut, I. Batalier, A. Inigo, J. 
 Gallego 

 6  Ju. Gomez de 
 Liaño 

 H. Cani, J. Parker, A. Melecio, D. Ildefonso, J. Manuel, S. 
 Manganti, J. Clemente, J. Varilla, C. Conner, J. Espeleta, M. 
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 Aquino 

 7  B. Akhuetie  S. Akomo, B. Ebona, V. Magbuhos, P. Orizu, D. Murrell, A. 
 Kouame, S. Camacho 

 8  P. Desiderio  D. Ildefonso, J. Clemente, S. Manganti, M. Nieto, C. Vito, F. 
 Serrano, J. Lastimosa, A. Inigo, J. Manuel, D. Dario 

 9  M. Lee  A. Asistio, B. Bienes, E. Mojica, J. Go, D. Yu, K. Tuffin 

 10  S. Manganti  J. Manuel, P. Desiderio, F. Serrano, D. Ildefonso, Ju. Gomez 
 de Liaño, A. Caracut, W. Comboy, A. Inigo 

 11  J. Clemente  D. Dario, Ju. Gomez de Liaño, P. Desiderio, J. Varilla, M. 
 Maloles, M. Nieto, C. Vito 

 12  J. Baltazar  L. Santillian, M. Dyke, P. Sarr, R. Escoto, L. Gonzales, C. 
 Catapusan, J. Sinclair, I. Batalier 

 13  P. Sarr  M. Dyke, J. Sinclair, J. Baltazar, L. Santillian, G. Mahinay, I. 
 Gaye 

 14  L. Santillian  J. Baltazar, R. Escoto, M. Dyke, J. Cullar, R. Verano, P. Sarr, 
 L. Gonzales 

 15  T. Ravena  P. Manalang, A. Pasaol, I. Go, W. Navarro, J. Manzo 

 16  P. Manalang  I. Go, W. Navarro, T. Ravena, A. Pasaol, J. Lastimosa, A. 
 Tolentino 

 17  A. Kouame  V. Magbuhos, B. Akhuetie, D. Murrell, S. Akomo, B. Ebona, 
 J. Manzo, S. Ildefonso 

 18  A. Caracut  L. Gonzales, R. Verano, J. Manuel, A. Melecio, S. Manganti, 
 J. Ahanmisi, W. Comboy, T. Tio, J. Gallego, I. Batalier 

 19  H. Cani  Ju. Gomez de Liaño, J. Parker, J. Manuel, A. Melecio, J. 
 Espeleta, J. Varilla 

 20  W. Comboy  A. Inigo, J. Manuel, A. Caracut, S. Manganti, A. Melecio, J. 
 Ahanmisi 
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 Figure  4.9  shows  the  plot  of  the  number  of  neighbors  (similar  shooting 

 habits)  a  player  has  versus  the  average  distance  between  him  and  his  neighbors.  The 

 size  of  the  circle  indicates  the  number  of  field  goal  attempts  by  the  player.  This  plot 

 can  identify  players  with  unique  shooting  habits  (low  number  of  neighbors  and  high 

 average  distance)  and  those  with  common  shooting  habits  (high  number  of 

 neighbors  with  low  average  distance).  There  are  two  groups  of  players  that  are 

 interesting  in  Figure  4.9.  The  first  one  is  the  group  of  players  with  average  distance 

 near  or  less  than  0.1.  This  indicates  that  they  have  very  similar  shooting  habits  to 

 their  neighbors.  Players  from  this  group  include  P.  Orizu,  B.  Ebona.  S.  Akomo,  and 

 B.  Akhuetie.  What s̓  characteristic  of  these  four  players  is  that  they  almost 

 exclusively  take  shots  from  near  the  basket  as  evidenced  by  their  unusually  high 

 weights  in  Component  1  of  the  spatial  basis  vectors.  The  second  group  are  those 

 whose  average  distance  to  their  neighbors  is  greater  than  0.3.  All  the  players  that 

 belong  to  this  group  only  have  five  to  six  neighbors  each.  This  combination  of  low 

 number  of  neighbors  and  long  distance  between  them  and  their  neighbors  could 

 indicate  that  the  players  belonging  to  this  group  have  uncommon  shooting  habits 

 relative  to  the  rest  of  the  league.  The  players  in  this  group  are  G.  Mamuyac,  J.  Pingoy, 

 F. Jaboneta, and T. Tio. 
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 Figure 4.9 

 Plot  of  the  number  of  playerʼs  neighbors  vs  average  distance  between  the  player  and  his 

 neighbors.  The  size  of  the  circle  corresponds  to  the  number  of  field  goal  attempts  by  the 

 player. 

 Note:  The  number  of  neighbors  indicate  the  number  of  players  around  the  league 

 with  similar  shooting  habits  as  the  player.  The  average  distance  indicates  how 

 similar the player is to his neighbors (shorter distance = more similar). 

 An interactive online-version of the chart can be found at: 

 https://datawrapper.dwcdn.net/HhqG5/1/ 

https://datawrapper.dwcdn.net/HhqG5/1/
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 Figure  4.10  shows  the  same  graph  as  Figure  4.9  but  adds  information  about 

 the player s̓ team. 

 Figure 4.10 

 Plot  of  the  number  of  playerʼs  neighbors  vs  average  distance  between  the  player  and  his 

 neighbors.  The  size  of  the  circle  corresponds  to  the  number  of  field  goal  attempts  by  the 

 player. The color corresponds to the team. 

 Note:  An interactive online version of the chart can  be found at: 

 https://datawrapper.dwcdn.net/ReKGQ/1/ 

https://datawrapper.dwcdn.net/ReKGQ/1/
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 Another  way  to  look  at  the  data  is  to  look  at  the  similarities  of  players  with 

 their  teammates.  For  each  team,  a  nearest  neighbor  analysis  was  performed  to 

 compute  the  average  distance  between  a  player  and  all  his  teammates.  Figure  4.11 

 shows  the  variation  of  player  shooting  habits  per  team.  An  interesting  observation 

 here  are  the  plots  of  the  UE  Red  Warriors  and  DLSU  Green  Archers.  In  the  case  of 

 both  teams,  the  distances  between  the  shooting  habits  of  their  players  with  the  rest 

 of  their  teammates  are  small  which  means  that  their  players  have  similar  shooting 

 habits  and  can  indicate  that  both  teams  run  a  predictable  offense  regardless  of  the 

 combination  of  players  on  the  court.  For  both  teams,  the  players  with  the  most  field 

 goal  attempts  are  also  those  with  the  most  similar  shooting  habits  to  the  rest  of  their 

 team indicated by the large circles at the lower end of their graphs. 

 In  contrast,  the  other  teams  have  a  significantly  larger  range  of  values  in 

 terms  of  the  similarities  in  the  shooting  habits  of  their  players.  All  of  them  have  one 

 or  two  players  whose  shooting  habits  are  very  different  compared  to  the  rest  of  the 

 team—G.  Mamuyac  and  A.  Kouame  for  ADMU,  J.  Pingoy  and  V.  Magbuhos  for  ADU, 

 P.  Orizu  and  B.  Ebona  for  FEU,  D.  Yu  for  NU,  B.  Akhuetie  for  UP,  and  S.  Akomo  for 

 UST.  Unlike  UE  and  DLSU,  the  players  with  the  most  field  goal  attempts  for  the  rest 

 of  the  teams  do  not  always  have  similar  shooting  habits  with  the  rest  of  their 

 teammates which can indicate that the teams can run a more varied offense. 



 107 

 Figure 4.11 

 Plot  of  the  average  distance  between  a  playerʼs  shooting  habits  with  the  rest  of  his 

 teammates. Shorter distance = greater similarity. 

 Note:  An interactive online version of the chart can  be found at: 

 https://datawrapper.dwcdn.net/2UphE/1/ 

 The  complete  results  of  the  nearest  neighbors  analysis  are  found  below: 

 https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basket 

 ball/tree/main/outputs/nearest-neighbor 

https://datawrapper.dwcdn.net/2UphE/1/
https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball/tree/main/outputs/nearest-neighbor
https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball/tree/main/outputs/nearest-neighbor
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 4.5  Empirical Bayes estimate of Points Per Attempt 

 The  raw  Points  Per  Attempt  (PPA)  map  of  UAAP  Season  81  is  shown  in  Figure 

 4.12.  This  raw  PPA  map  is  spatially  noisy  and  contains  cells  that  have  very  high  or 

 very  low  values  compared  to  their  neighbors  that  can  be  attributed  to  the  fact  that 

 the PPA is estimated poorly at cells with low number of field goal attempts. 

 Figure 4.12 

 Raw Points Per Attempt (PPA) map for all field goals of UAAP Season 81 
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 To  create  a  better  estimate  of  the  PPA  at  each  cell,  an  EB  rate  estimate  of  the 

 PPA was created using the method described in Section 3.4.1. 

 For  each  cell,  a  prior  distribution  which  includes  nearby  and  equidistant  cells 

 was  defined.  Figure  4.13  shows  some  examples  of  priors  for  different  cells  on  the 

 court.  The  dark  pixel  indicates  the  location/shooting  cell  and  the  lighter  pixels 

 indicate the nearby and equidistant cells used as the prior for the EB-estimation. 

 More  than  90%  of  the  shooting  cells  had  at  least  40  cells  included  in  their 

 prior  distribution  while  around  80%  of  the  shooting  cells  had  at  least  40  field  goal 

 attempts  as  part  of  their  prior  distribution.  All  of  the  shooting  cells  with  a  prior 

 consisting  of  at  least  40  field  goal  attempts  are  located  within  10  meters  from  the 

 basket. 
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 Figure 4.13 

 Priors of different shooting cells 

 The  prior  means,  prior  variances,  and  shrinking  factors  were  then  computed. 

 These are shown in Figures 4.14, 4.15, and 4.16 respectively. 

 The  prior  means  in  Figure  4.14  show  considerable  symmetry  and  a  pattern 

 where  the  points  per  attempt  values  are  high  near  the  basket  then  slowly  decreases 

 from  outside  the  restricted  area  until  near  the  three-point  line  where  it  increases 

 again  until  about  2  meters  from  the  line  where  it  starts  decreasing  once  more.  The 

 prior  means  beyond  10  meters  from  the  basket  are  close  to  zero  because  almost  no 

 field goal attempts are taken from this distance. 
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 Figure 4.14 

 Map of prior means per shooting cell 

 Figure  4.15  shows  a  distinct  demarcation  at  around  10  meters  from  the  basket 

 where  the  prior  variances  suddenly  increase  in  value.  This  can  be  attributed  to  the 

 fact  that  more  than  99%  of  field  goal  attempts  are  taken  within  10  meters  from  the 

 basket.  Beyond  10  meters,  the  shooting  cells  have  a  high  number  of  cells  but  a  low 

 number of field goals that are part of their prior distribution. 
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 Figure 4.15 

 Map of prior variances per shooting cell 

 Figure  4.16  shows  that  shooting  cells  with  low  number  of  field  goal  attempts 

 or  high  variance  have  low  shrinking  factors  while  those  with  high  number  of  field 

 goal attempts or low variance have high shrinking factors. 
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 Figure 4.16 

 Map of shrinking factors per shooting cell 

 Finally,  the  Empirical  Bayes  estimate  of  the  PPA  was  computed  and  mapped 

 as  shown  in  Figure  4.17  and  Figure  4.18  shows  the  raw  PPA  map  and  the 

 EB-estimated  PPA  map  side-by-side.  The  EB-estimated  PPA  is  smoother  and  less 

 noisy  than  the  raw  PPA.  There  is  also  an  apparent  pattern  in  the  PPA—high  values 

 near  the  basket  and  within  the  restricted  area,  an  arc  from  2m  to  6m  from  the  basket 

 where  the  PPA  values  are  low,  another  arc  near  the  three-point  line  where  the  PPA 

 values increase, and really low values beyond 10 meters from the basket. 
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 Of  the  original  587  shooting  cells  with  at  least  1  field  goal  attempt,  the 

 difference  between  the  raw  PPA  and  the  EB-estimated  PPA  were  as  much  as  2.07 

 below  and  0.70  above  the  raw  PPA.  These  shooting  cells  with  a  high  difference 

 between  the  raw  and  estimated  PPA  are  usually  three-pointers  with  only  1  attempt 

 and  1  made  shot  or  areas  near  the  basket  with  low  number  of  attempts  and  made 

 shots.  All  in  all,  the  mean  difference  in  the  PPA  (EB  -  raw)  is  -0.09  with  more  than 

 70% of the differences falling between -0.25 and 0.25. 

 Figure 4.17 

 Empirical Bayes estimate of Points Per Attempt 
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 A. Raw PPA  B. EB-estimated PPA 
 Figure 4.18 

 Points Per Attempt for UAAP Season 81: (A) raw PPA; (B) Empirical Bayes-estimated PPA 

 The outputs of the Empirical Bayes estimation are found at: 

 https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basket 

 ball/tree/main/outputs/ebppa 

https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball/tree/main/outputs/ebppa
https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball/tree/main/outputs/ebppa
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 4.6  Player analysis 

 The  EB-estimated  PPA  is  used  to  compute  for  the  Spatial  Scoring 

 Effectiveness (SScE) and Points Relative to League Average (PRLA). 

 Table  4.5  shows  the  shooting  statistics  of  players  with  FGA  >=  28  for  UAAP 

 Season  81.  The  range  of  values  for  PPA  is  considerably  wider  than  that  of  EPPA  but 

 their  means  are  similar.  SScE  ranges  almost  1  point  per  shot  showing  considerable 

 variability  in  shooting  effectiveness  of  the  players  even  when  considering  the 

 locations  of  their  shots.  The  standard  deviation  of  the  total  points  scored  by  the 

 players  is  54  while  the  standard  deviation  of  the  difference  between  their  total  and 

 expected  points  (PRLA)  is  just  12  suggesting  that  the  variability  in  points  scored  can 

 be attributed to differences in the location of their field goal attempts. 

 Table 4.5 

 UAAP Season 81 shooting statistics for players with FGA >= 28 

 PPA  EPPA  SSE  PTS  PRLA 

 Minimum  0.468  0.813  -0.400  18.000  -26.767 

 Mean  0.884  0.917  0.034  78.134  -1.046 

 Maximum  1.451  1.101  0.377  273.000  48.011 

 Standard deviation  0.180  0.059  0.159  54.187  11.890 
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 Before  looking  at  the  SScE  of  players,  a  good  metric  to  look  at  first  is  the 

 Estimated  Points  Per  Attempt  (EPPA).  EPPA  is  an  indicator  of  how  easy  or  difficult  a 

 shooting  constellation  is—high  EPPA  values  indicate  that  a  player  takes  shots  from 

 areas  on  the  court  that  are,  on  average,  easy  to  score  from  while  low  EPPA  values 

 indicate the opposite. 

 Table  4.6  shows  the  players  with  the  ten  highest  and  ten  lowest  EPPA  values 

 for  UAAP  Season  81.  A  noteworthy  observation  is  that  half  of  the  players  with  high 

 EPPA  values  are  listed  as  Centers—a  position  that  traditionally  plays  inside  the 

 paint/restricted  area  and  takes  high  percentage  shots  near  the  basket.  Only  2  of  the 

 players  with  the  highest  EPPA  are  listed  as  guards.  This  is  a  striking  contrast  with  the 

 players  with  the  ten  lowest  EPPA—8  of  whom  are  listed  are  guards.  It  is  intriguing 

 that  two  centers  are  among  the  ten  players  with  the  lowest  EPPA  but  this  shouldnʼt 

 be  surprising  if  we  consider  the  spatial  distribution  of  these  two  playersʼ  field  goals. 

 Both  I.  Gaye  and  E.  Caunan  took  a  considerable  amount  of  their  field  goals  outside 

 of  the  paint  which  is  different  from  the  shooting  tendencies  of  fellow  Centers  such 

 as P. Orizu, B. Akhuetie, and A. Kouame 
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 Table 4.6 

 UAAP Season 81 players with highest and lowest EPPA values 

 Highest  Lowest 

 Player  Team  Pos  EPPA  Player  Team  Pos  EPPA 

 1  P. Orizu  FEU  C  1.101  82  J. Gallego  NU  SG  0.813 

 2  B. Akhuetie  UP  C  1.084  81  S. Belangel  ADMU  PG  0.821 

 3  A. Kouame  ADMU  C  1.066  80  T. Tio  ADMU  G  0.839 

 4  S. Akomo  UST  C  1.059  79  J. Espeleta  ADU  SG  0.844 

 5  B. Ebona  FEU  C  1.051  78  J. Ahanmisi  ADU  SG  0.845 

 6  F. Jaboneta  UP  SF  1.021  77  A. Melecio  DLSU  SG  0.847 

 7  D. Murrell  UP  PF  1.020  76  I. Gaye  NU  C  0.851 

 8  C. Cansino  UST  SG  1.001  75  J. Varilla  UE  G  0.858 

 9  A. Joson  NU  PG  0.991  74  E. Caunan  UST  C  0.858 

 10  V. Magbuhos  ADU  PF  0.987  73  K. Zamora  UST  SG  0.865 

 Table  4.7  shows  the  ten  players  with  the  highest  and  lowest  PPA.  We  now  see 

 a  lot  more  Guards,  in  fact  five  of  them,  in  the  list  of  players  with  the  highest  PPA  in 

 the  league.  This  indicates  that  even  though  the  field  goal  distribution  of  these 

 Guards  estimate  that  they  should  score  less,  they  are  actually  performing  better 

 than  expected.  Meanwhile,  we  still  have  a  good  mix  of  Centers,  Forwards,  and 

 Guards in the list of players with the lowest PPA. 
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 Table 4.7 

 UAAP Season 81 players with highest and lowest PPA values 

 Highest  Lowest 

 Player  Team  Pos  PPA  Player  Team  Pos  PPA 

 1  P. Orizu  FEU  C  1.451  82  A. Wong  ADMU  G  0.468 

 2  J. Go  DLSU  SG  1.297  81  E. Mojica  ADU  SG  0.500 

 3  D. Dario  UP  G  1.257  80  K. Zamora  UST  SG  0.513 

 4  A. Kouame  ADMU  C  1.220  79  R. Acuno  UE  C  0.643 

 5  B. Ebona  FEU  C  1.216  78  I. Batalier  UST  GF  0.645 

 6  B. Akhuetie  UP  C  1.198  77  W. Navarro  ADMU  F  0.652 

 7  K. Tuffin  FEU  SF  1.158  76  M. Aquino  NU  C  0.667 

 8  A. Asistio  ADMU  G  1.101  75  K. Montalbo  DLSU  PG  0.672 

 9  G. Mamuyac  ADMU  SG  1.094  74  C. Catapusan  ADU  PF  0.674 

 10  J. Ahanmisi  ADU  SG  1.093  73  J. Gallego  NU  SG  0.677 

 Table  4.8  shows  the  ten  players  with  the  highest  and  lowest  SScE.  These  are 

 the  players  who  over-performed  or  under-performed  what  was  expected  of  their 

 individual  field  goal  distributions.  The  table  also  shows  the  95%  confidence  interval 

 computed  using  the  weighted  paired  t-test  of  SScE.  Most  of  the  players  with  the 

 highest  and  lowest  SScE  have  low  field  goal  attempts.  Ten  players—3  in  the  highest 

 and  7  in  the  lowest—have  less  than  50  FGA.  Only  2  of  the  20  players  listed  have  more 

 than  100  FGA.  This  could  explain  the  large  confidence  intervals,  most  of  which 

 include  0.  In  the  top  10  and  bottom  10  players,  only  two  from  the  top  list  had  95% 
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 confidence  intervals  above  zero  while  only  six  from  the  bottom  list  had  95% 

 confidence  intervals  below  zero.  All  in  all,  out  of  the  82  players  who  were  part  of  the 

 analysis,  73  had  confidence  intervals  that  spanned  zero,  two  had  positive  SScE  with 

 confidence  intervals  entirely  above  zero,  and  seven  had  negative  SScE  with 

 confidence  intervals  entirely  below  zero.  The  intervals  are  relatively  wide  with  a  lot 

 of  overlap  between  the  players.  The  results  of  weighted  paired  two  one-sided  T-tests 

 (TOST)  on  the  local  SScE  of  the  players  also  agree  with  this  observation.  At  p  =  0.05  , 

 the  hypothesis  that  the  SScE  of  a  player  is  lower  than  0  could  be  rejected  for  only  six 

 players.  This  includes  the  two  players  with  entirely  positive  SScE  confidence 

 intervals.  Meanwhile,  at  p  =  0.05  ,  the  hypothesis  that  the  SScE  of  a  player  is  higher 

 than  0  could  be  rejected  for  12  players  including  all  the  seven  players  whose  SScE 

 had entirely negative confidence intervals. 

 Table  4.9  shows  the  top  SScE  of  players  with  FGA  >=  100.  This  list  includes 

 most  of  the  top  shot  takers  for  each  team  shown  in  Table  4.2.  For  this  list,  the 

 intervals  are  relatively  narrower  even  though  most  of  them  still  overlap.  This 

 suggests  that  adding  more  FG  data  might  improve  the  accuracy  of  the  SScE 

 computation—e.g. using data from multiple seasons or multiple leagues. 

 In  terms  of  the  range  of  SScE  values,  these  also  become  narrower  as  more 

 field  goals  are  attempted.  For  players  with  at  least  50  FGA:  40%  (23/58)  had  SScE 

 values  from  -0.05  to  0.05,  55%  (32/58)  had  SScE  values  from  -0.1  and  0.1,  and  84% 

 (49/58)  had  SScE  values  between  -0.2  and  0.2.  For  players  with  at  least  70  FGA:  46% 



 122 

 (19/41)  had  SScE  values  from  -0.05  to  0.05,  61%  (25/41)  had  SScE  values  from  -0.1  and 

 0.1,  and  90%  (37/41)  had  SScE  values  from  -0.2  and  0.2.  For  players  with  at  least  100 

 FGA:  50%  (12/24)  had  SScE  values  from  -0.05  to  0.05,  71%  (17/24)  had  SScE  values 

 from  -0.1  and  0.1,  and  96%  (23/24)  had  SScE  values  between  -0.2  and  0.2.  This 

 indicates  that  as  a  player  takes  more  shots,  it  becomes  increasingly  less  likely  for  the 

 player to score 0.2 points more or less than expected. 

 Table 4.8 

 UAAP Season 81 players with highest and lowest SScE (FGA >= 28) 

 Highest (FGA >= 28) 

 Player  Team  Pos  FGA  EPPA  PPA  SScE (95% CI) 

 1  J. Go  DLSU  SG  37  0.920  1.297  0.38 (0.821, -0.062) 

 2  D. Dario  UP  G  35  0.900  1.257  0.356 (0.833, -0.120) 

 3  P. Orizu  FEU  C  51  1.101  1.451  0.352 (0.623, 0.081) 

 4  J. Ahanmisi  ADU  SG  194  0.845  1.093  0.247 (0.427, 0.068) 

 5  K. Tuffin  FEU  SF  57  0.948  1.158  0.210 (0.526, -0.105) 

 6  A. Tolentino  FEU  PF  117  0.892  1.085  0.194 (0.422, -0.035) 

 7  A. Asistio  ADMU  G  89  0.907  1.101  0.193 (0.464, -0.078) 

 8  G. Mamuyac  ADMU  SG  32  0.914  1.094  0.177 (0.603, -0.249) 

 9  J. Lastimosa  ADU  PG  81  0.889  1.062  0.172 (0.431, -0.088) 

 10  B. Ebona  FEU  C  51  1.051  1.216  0.167 (0.466, -0.132) 
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 Table 4.8 (cont) 

 Lowest (FGA >= 28) 

 Player  Team  Pos  FGA  EPPA  PPA  SScE (95% CI) 

 82  A. Wong  ADMU  G  47  0.868  0.468  -0.400 (-0.125, -0.676) 

 81  E. Mojica  ADU  SG  36  0.878  0.500  -0.378 (-0.029, -0.727) 

 80  K. Zamora  UST  SG  76  0.865  0.513  -0.352 (-0.112, -0.593) 

 79  C. Catapusan  ADU  PF  43  0.986  0.674  -0.310 (-0.003, -0.617) 

 78  F. Jaboneta  UP  SF  31  1.021  0.742  -0.279 (0.161, -0.718) 

 77  R. Acuno  UE  C  28  0.900  0.643  -0.255 (0.097, -0.607) 

 76  I. Batalier  UST  GF  31  0.879  0.645  -0.233 (0.121, -0.586) 

 75  W. Navarro  ADMU  F  66  0.879  0.652  -0.228 (-0.001, -0.455) 

 74  S. Ildefonso  NU  PF  90  0.944  0.722  -0.224 (-0.042, -0.405) 

 73  M. Maloles  UE  G  42  0.908  0.690  -0.218 (0.136, -0.573) 
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 Table 4.9 

 SScE of UAAP Season 81 players with FGA >= 100 

 FGA >= 100 

 Player  Team  Pos  FGA  EPPA  PPA  SScE (95% CI) 

 1  J. Ahanmisi  ADU  SG  194  0.845  1.093  0.247 (0.427, 0.068) 

 2  A. Tolentino  FEU  PF  117  0.892  1.085  0.194 (0.422, -0.035) 

 3  A. Kouame  ADMU  C  132  1.066  1.22  0.155 (0.313, -0.003) 

 4  B. Akhuetie  UP  C  177  1.084  1.198  0.116 (0.276, -0.045) 

 5  Ju.  Gomez  de 
 Liaño 

 UP  G  180  0.888  0.994  0.107 (0.276, -0.062) 

 6  A. Melecio  DLSU  SG  203  0.847  0.926  0.078 (0.244, -0.088) 

 7  J. Clemente  NU  SG  165  0.919  0.976  0.057 (0.237, -0.123) 

 8  P. Desiderio  UP  SG  175  0.921  0.960  0.04 (0.224, -0.145) 

 9  J. Baltazar  DLSU  C  149  0.929  0.966  0.038 (0.207, -0.131) 

 10  H. Cani  FEU  G  120  0.874  0.908  0.034 (0.235, -0.166) 

 11  M. Lee  UST  PG  175  0.878  0.909  0.03 (0.205, -0.144) 

 12  D. Ildefonso  NU  SF  195  0.913  0.938  0.026 (0.184, -0.132) 

 13  S. Manganti  ADU  SF  172  0.892  0.913  0.021 (0.185, -0.144) 

 14  L. Santillian  DLSU  PF  141  0.898  0.908  0.008 (0.184, -0.167) 

 15  C. Cansino  UST  SG  115  1.001  1.009  0.007 (0.243, -0.229) 

 16  W. Comboy  FEU  G  119  0.874  0.857  -0.017 (0.209, -0.244) 

 17  A. Pasaol  UE  F  294  0.952  0.929  -0.023 (0.098, -0.143) 

 18  R. Subido  UST  PG  197  0.867  0.843  -0.023 (0.148, -0.195) 
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 19  J. Varilla  UE  G  111  0.858  0.82  -0.038 (0.171, -0.247) 

 20  A. Caracut  DLSU  PG  127  0.877  0.819  -0.059 (0.134, -0.252) 

 21  T. Ravena  ADMU  F  139  0.936  0.871  -0.066 (0.122, -0.253) 

 22  Z. Huang  UST  F  101  0.893  0.802  -0.09 (0.104, -0.285) 

 23  P. Sarr  ADU  C  146  0.897  0.74  -0.158 (-0.006, -0.311) 

 24  P. Manalang  UE  PG  135  0.935  0.763  -0.172 (0.018, -0.363) 

 Figure  4.19  shows  the  relationship  between  EPPA  and  SScE  for  all  82  players 

 in  UAAP  Season  81  with  at  least  28  field  goal  attempts.  The  size  of  the  circles  indicate 

 the  number  of  field  goals  by  the  players.  Most  of  the  players  with  a  high  number  of 

 FGA  (>=100)  cluster  near  the  center  of  the  graph  indicating  that  the  more  players 

 shoot,  the  more  they  tend  to  score  as  expected.  L.  Santillan  earns  the  distinction  of 

 having  the  PPA  (0.908)  that  is  most  similar  to  his  EPPA  (0.898)  with  an  SScE  of  just 

 0.01 in 144 FGA. 

 Players  who  scored  more  than  expected  are  on  the  upper  half  of  the  graph 

 while  those  who  scored  less  are  in  the  bottom  half.  Players  in  the  upper  right 

 quadrant  are  those  with  already  high  expected  points  but  still  manage  to  score 

 beyond  that.  These  are  players  who  have  good  shot  selection  and  good  shooting 

 percentages.  An  example  in  the  chart  is  B.  Akhuetie  with  an  EPPA  of  1.084  and  SScE 

 of  0.114  in  his  177  FGA.  The  top  5  players  with  the  highest  EPPA,  all  of  whom  are 

 Centers, as shown in Table 4.6 are all in this quadrant. 
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 Those  in  the  upper  le�  are  players  with  low  expected  points  based  on  their 

 field  goal  distribution  but  manage  to  score  more  than  expected.  The  players  in  this 

 quadrant  take  difficult  shots—maybe  because  they  were  forced  by  the  defense,  they 

 had  poor  shot  selection,  or  they  just  tend  to  take  shots  where  other  players 

 struggle—but  still  manage  to  make  them.  An  example  is  J.  Ahanmisi  with  an  EPPA  of 

 just  0.845  in  212  FGA  but  an  SScE  of  0.248  which  is  30%  of  his  expected  points  per 

 attempt. 

 The  players  in  the  lower  right  quadrant  are  players  with  high  expected  points 

 but  failed  to  score  as  expected.  This  indicates  that  these  players  are  already  taking 

 field  goals  at  the  right  locations  on  the  court—i.e.  good  shot  selection—and  they  just 

 need  to  work  on  making  the  shots  they  take.  An  example  is  F.  Jaboneta  with  an  EPPA 

 of 1.021 but an SScE of -0.279 in his 31 FGA. 

 The  lower  le�  quadrant  is  the  quadrant  of  woe.  This  includes  players  with 

 low  expected  points—i.e.  difficult  field  goal  attempts  distribution—and  negative 

 SScE.  Players  in  this  quadrant  should  work  both  on  taking  better  field  goals  and 

 making  them.  An  example  is  K.  Zamora  with  an  EPPA  of  0.865  and  an  SScE  of  -0.352 

 over 76 FGA. 
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 Figure 4.19 

 Chart  of  Expected  Points  Per  Attempt  vs  Spatial  Scoring  Effectiveness,  UAAP  Season  81. 

 Selected players are labeled. 

 An online version of the chart can be found here: 

 https://datawrapper.dwcdn.net/u3gMr/1/ 

https://datawrapper.dwcdn.net/u3gMr/1/
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 Similar  to  SScE,  PRLA  also  compares  expected  and  observed  values  but 

 instead  of  points  per  attempt,  PRLA  compares  the  expected  points  scored  by  a 

 player  based  on  his  field  goal  distribution  against  his  actual  points  scored.  SScE  and 

 PRLA  are  interrelated  such  that  a  player  with  positive  SScE  will  have  positive  PRLA 

 while  a  player  with  negative  SScE  will  have  negative  PRLA.  However,  because  PRLA 

 isnʼt  a  rate  statistic  like  SScE  but  a  counting  statistic,  it  is  affected  by  the  number  of 

 field  goal  attempts  by  a  player.  Between  two  players  with  the  same  SScE,  the  player 

 with  more  FGA  will  have  a  higher  or  lower  PRLA  depending  on  whether  the  SScE  is 

 positive  or  negative.  PRLA  is  essentially  a  raw  count  of  how  many  points  a  player 

 scored above or below expected over the course of the season. 

 Table  4.10  shows  the  top  10  players  (FGA  >=  28)  with  the  highest  and  lowest 

 PRLA.  J.  Ahanmisi  and  A.  Tolentino  had  the  two  highest  PRLA  owing  to  their  high 

 SScE  and  FGA—the  same  players  are  ranked  1st  and  2nd  in  SScE  for  players  with 

 FGA>=100.  All  five  players  with  the  highest  PRLA  and  two  of  the  five  players  with  the 

 lowest  PRLA  have  FGA>=100  showing  how  PRLA  is  greatly  affected  by  the  number  of 

 FGA  by  a  player.  Of  note  are  J.  Go  (9th  highest  PRLA)  and  E.  Mojica  (9th  lowest 

 PRLA)  as  both  players  managed  to  be  part  of  the  highest  and  lowest  PRLA  list  even 

 though  they  only  took  37  and  36  FGA  respectively.  In  the  case  of  J.  Go,  this  means 

 that  he  was  able  to  make  the  most  of  his  small  number  of  FGA  while  it  was  the 

 opposite for E. Mojica. 
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 The  results  of  paired,  weighted  two  one-sided  T-test  (TOST)  on  the  local  PRLA 

 values  of  the  players  showed  that  at  p  =  0.05  ,  the  hypothesis  that  a  player s̓  PRLA  is 

 below  zero  could  be  rejected  for  14  players  including  8  from  the  top  10  list  of  Table 

 4.10  (A.  Melecio  at  J.  Lastimosa  were  not  included);  while  the  hypothesis  that  a 

 player s̓  PRLA  is  above  zero  could  be  rejected  for  14  other  players  including  8  from 

 the bottom 10 list of Table 4.10 (S. Ildefonso and R. Escoto were not included). 

 Table 4.10 

 UAAP Season 81 players with highest and lowest PRLA (FGA >= 28) 

 Highest (FGA >= 28) 

 Player  Team  Pos  FGA  EPTS  PTS  PRLA 

 1  J. Ahanmisi  ADU  SG  194  164  212  48 

 2  A. Tolentino  FEU  PF  117  104  127  23 

 3  A. Kouame  ADMU  C  132  141  161  20 

 4  B. Akhuetie  UP  C  177  192  212  20 

 5  Ju. Gomez de Liaño  UP  G  180  160  179  19 

 6  P. Orizu  FEU  C  51  56  74  18 

 7  A. Asistio  ADMU  G  89  81  98  17 

 8  A. Melecio  DLSU  SG  203  172  188  16 

 9  J. Go  DLSU  SG  37  34  48  14 

 10  J. Lastimosa  ADU  PG  81  72  86  14 
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 Table 4.10 (cont.) 

 Lowest (FGA >= 28) 

 Player  Team  Pos  FGA  EPTS  PTS  PRLA 

 82  K. Zamora  UST  SG  76  66  39  -27 

 81  P. Manalang  UE  PG  135  126  103  -23 

 80  P. Sarr  ADU  C  146  131  108  -23 

 79  S. Ildefonso  NU  PF  90  85  65  -20 

 78  J. Parker  FEU  PG  94  84  64  -20 

 77  A. Wong  ADMU  G  47  41  22  -19 

 76  R. Escoto  FEU  PF  93  84  69  -15 

 75  W. Navarro  ADMU  F  66  58  43  -15 

 74  E. Mojica  ADU  SG  36  32  18  -14 

 73  J. Manzo  UP  PG  96  91  78  -13 

 Aside  from  the  global  SScE  and  PRLA  values,  other  ways  to  summarize  and 

 describe  shooting  relative  to  the  spatial  distribution  of  field  goal  attempts  include 

 Spread  and  the  different  Range  metrics  introduced  in  3.4.4.  Table  4.11  shows  the  5 

 players  with  the  highest  and  lowest  Spread  among  players  with  at  least  100  FGA. 

 Table  4.12  shows  the  5  players  with  the  highest  and  lowest  Effective  Range  (ERNG) 

 and  Total  Effective  Range  %  (TERNG)  for  the  same  group  of  players.  Table  4.13 

 shows  the  5  players  with  the  highest  and  lowest  Net  Effective  Range  (NERNG)  and 

 Player Effective Range % (PERNG) also for the same group of players. 
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 As  expected,  the  players  with  the  highest  number  of  FGA  also  had  the  highest 

 Spread  (the  player  with  the  4th  most  FGA,  D.  Ildefonso,  was  ranked  6th  in  Spread)  as 

 shown  in  Table  4.11.  The  five  players  on  the  top  Spread  list  took  a  lot  of  shots  and 

 took  them  from  a  lot  of  locations  on  the  court.  This  is  also  supported  by  the  popular 

 opinion  about  these  players.  All  of  them  are  considered  scorers  who  can  take  the 

 outside  shot,  drive  to  the  basket,  or  pull-up  from  mid-range.  In  contrast,  the  list  of 

 players  with  the  least  Spread  includes  B.  Akhuetie  and  P.  Sarr  who  were  ranked  7th 

 and  13th  respectively  in  terms  of  their  number  of  FGA.  Their  inclusion  on  this  list, 

 as  with  that  of  A.  Kouame,  can  be  attributed  to  their  position  and  style  of  play.  All 

 three  players  are  Centers  who  take  a  majority  of  their  shots  near  the  basket.  Figure 

 4.20  shows  the  correlation  between  FGA  and  Spread.  There  was  almost  perfect 

 linear  correlation  between  FGA  and  Spread  (Pearson  correlation  coefficient  r  =  0.94  , 

 p-value at near zero value  ) aside from some outlying  players labeled on the graph. 
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 Table 4.11 

 UAAP  Season  81  players  (FGA  >=  100)  who  have  the  highest  and  lowest  number  of 

 shooting cells with at least 1 FGA (Spread). 

 Highest (FGA >= 100) 

 Player  Team  Pos  FGA  Spread 

 1  A. Pasaol  UE  F  294 (1st)  151 

 2  R. Subido  UST  PG  197 (3rd)  144 

 3  J. Ahanmisi  ADU  SG  194 (5th)  143 

 4  A. Melecio  DLSU  G  203 (2nd)  142 

 5  Ju. Gomez de Liaño  UP  G  180 (6th)  124 

 Lowest (FGA >= 100) 

 Player  Team  Pos  FGA  Spread 

 24  A. Kouame  ADMU  C  132 (17th)  51 

 23  B. Akhuetie  UP  C  177 (7th)  54 

 22  C. Cansino  UST  SG  115 (22nd)  65 

 21  Z. Huang  UST  F  101 (24th)  71 

 20  P. Sarr  ADU  C  146 (13th)  74 
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 Figure 4.20 

 Field  Goal  Attempts  (FGA)  and  Spread  for  UAAP  Season  81.  Selected  outlying  players  are 

 labeled. 
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 As  with  FGA  and  Spread,  most  of  the  players  with  the  highest  and  lowest 

 Spread  also  had  the  highest  and  lowest  Effective  Range  and  Total  Effective  Range  % 

 metrics  as  shown  in  Table  4.12.  Four  of  the  five  players  with  the  highest  Spread  are 

 included  in  the  list  of  players  with  the  five  highest  ERNG/TERNG.  R.  Subido,  ranked 

 2nd  in  Spread,  is  ranked  6th  in  ERNG/TERNG.  Meanwhile,  all  the  players  with  the 

 lowest  Spread  also  had  the  lowest  ERNG/TERNG.  The  assumption  is  that  if  a  player 

 takes  field  goals  at  a  lot  of  areas  on  the  court  then  the  chance  of  him  being  effective 

 at  more  areas  on  the  court  increases.  This  assumption  is  validated  in  Figure  4.21 

 which  shows  that  there  was  linear  correlation  between  Spread  and  TERNG  (Pearson 

 correlation  coefficient  r  =  0.95,  p-value  at  near  zero  value  ).  Outlying  players  are  once 

 again labeled in the graph. 
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 Table 4.12 

 UAAP  Season  81  players  (FGA  >=  100)  who  have  the  highest  and  lowest  number  of 

 shooting  cells  where  they  score  more  than  expected  (SScE  >  0);  ERNG  =  count  of  cells  where 

 SScE > 0; TERNG = ERNG / number of cells in the scoring area (587) . 

 Highest (FGA >= 100) 

 Player  Team  Pos  Spread  ERNG  TERNG 

 1  J. Ahanmisi  ADU  SG  143 (3rd)  72  12.27 

 2  A. Melecio  DLSU  PG  142 (4th)  57  9.71 

 3  A. Pasaol  UE  F  151 (1st)  56  9.54 

 4  Ju. Gomez de Liaño  UP  G  124 (5th)  52  8.86 

 5  D. Ildefonso  NU  SF  122 (6th)  49  8.35 

 5  J. Clemente  NU  SG  111 (9th)  49  8.35 

 Lowest (FGA >= 100) 

 Player  Team  Pos  Spread  ERNG  TERNG 

 24  B. Akhuetie  UP  C  54 (23rd)  26  4.43 

 23  C. Cansino  UST  PG  65 (22nd)  27  4.60 

 22  P. Manalang  UE  PG  93 (15th)  27  4.69 

 21  P. Sarr  ADU  C  74 (20th)  28  4.77 

 20  A. Kouame  ADMU  C  51 (24th)  29  4.94 

 20  Z. Huang  UST  PF  71 (21st)  29  4.94 
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 Figure 4.21 

 Spread  and  Total  Effective  Range  %  (TERNG)  for  UAAP  Season  81.  Selected  outlying 

 players are labeled. 
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 By  themselves,  ERNG/TERNG  only  tell  us  how  many  locations  on  the  court  a 

 player  scores  more  than  expected.  A  player  with  high  ERNG/TERNG  is  someone  who 

 scores  effectively  at  different  locations  on  the  court  but  it  does  not  tell  us  whether  or 

 not  a  player  is  an  effective  scorer  based  on  his  field  goal  attempt  distribution.  For 

 that,  we  need  to  look  at  NERNG  and  PERNG.  Compared  to  ERNG/TERNG,  Figure  4.22 

 shows  that  there  was  some  negative  correlation,  although  not  perfect,  between 

 Spread  and  NERNG  (Pearson  correlation  coefficient  r  =  -0.58,  p-value  at  near  zero 

 value  ).  This  means  that  players  who  took  field  goals  at  more  locations  were  effective 

 at  less  locations.  In  Table  4.13,  the  three  players  with  the  lowest  Spread  are  in  the 

 top  5  list  of  NERNG  while  the  two  players  with  the  highest  Spread  are  in  the  bottom  5 

 list  of  NERNG.  Of  note  is  J.  Ahanmisi  who  had  the  third  highest  but  still  managed  to 

 get  a  positive  NERNG  (+1,  2nd).  This  means  that  even  though  he  took  FGA  in  a  lot  of 

 areas  on  the  court,  he  was  still  able  to  score  better  than  expected  in  more  than  half 

 of those areas. 

 Meanwhile,  Figure  4.23  shows  that  there  is  no  evidence  to  support  the 

 conclusion  that  there  was  correlation  between  Spread  and  PERNG  (Pearson 

 correlation  coefficient  r  =  0.07,  p-value  =  0.51  ).  This  suggests  that  taking  shots  at 

 more  locations  on  the  court  does  not  necessarily  equate  to  being  a  more  efficient  or 

 less efficient scorer. 
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 Table 4.13 

 UAAP  Season  81  players  (FGA  >=  100)  who  have  the  highest  and  lowest  proportion  of 

 shooting  cells  where  they  score  more  than  expected  (SScE  >  0);  NERNG  =  ERNG  -  count  of 

 cells where SScE <= 0; PERNG = ERNG / Spread . 

 Highest (FGA >= 100) 

 Player  Team  Pos  Spread  NERNG  PERNG 

 1  A. Kouame  ADMU  C  51 (24th)  7  56.86 

 2  J. Ahanmisi  ADU  SG  143 (3rd)  1  50.35 

 3  B. Akhuetie  UP  C  54 (23rd)  -2  48.15 

 4  A. Tolentino  FEU  PF  93 (14th)  -9  45.16 

 5  C. Cansino  UST  PG  65 (22nd)  -11  41.54 

 Lowest (FGA >= 100) 

 Player  Team  Pos  Spread  NERNG  PERNG 

 24  R. Subido  UST  PG  144 (2nd)  -50  32.64 

 23  P. Manalang  UE  PG  93 (15th)  -39  29.03 

 22  A. Pasaol  UE  F  151 (1st)  -39  37.09 

 21  M. Lee  UST  PG  117 (8th)  -33  35.90 

 20  A. Caracut  DLSU  PG  92 (16th)  -32  32.61 



 139 

 Figure 4.22 

 Spread  and  Net  Effective  Range  (NERNG)  for  UAAP  Season  81.  Selected  outlying  players 

 are labeled. 
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 Figure 4.23 

 Spread  and  Player  Effective  Range  %  (PERNG)  for  UAAP  Season  81.  Selected  outlying 

 players are labeled. 
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 4.6.1  Was J. Ahanmisi the best shooter/scorer during UAAP Season 81? 

 The case of J. Ahanmisi is an interesting one. 

 J.  Ahanmisi s̓  statistics  for  UAAP  Season  81  are  shown  in  Table  4.14.  Of  all  the 

 players  with  FGA  >=  28,  he  had  the  5th  lowest  EPPA  (78th  total)  but  the  10th  highest 

 PPA  and  the  4th  highest  SScE.  He  is  one  of  only  two  players  (FGA  >=  28)  with  a 

 confidence  interval  for  their  SScE  that s̓  entirely  above  zero.  For  players  with  FGA  >= 

 100,  he  ranked  last  (24th)  in  EPPA  but  3rd  in  PPA  and  1st  in  SScE.  He  has  the  highest 

 PRLA  and  the  3rd  highest  points  scored  even  though  he  only  had  the  6th  highest 

 EPTS. 

 What  this  means  is  that  even  though  he  had  one  of  the  most  difficult  and 

 toughest  field  goal  attempt  distributions  (evidenced  by  his  low  EPPA),  he  still 

 managed  to  score  beyond  what  was  expected  with  every  shot  he  took.  He  was  the 

 only  player  with  FGA  >=100  who  had  an  absolute  value  of  SScE  greater  than  0.2  and  a 

 confidence  interval  that s̓  entirely  above  zero.  All  the  other  players  with  FGA  >=  100 

 scored  more  or  less  as  expected  based  on  their  field  goal  distribution  and  had 

 confidence  intervals  for  their  SScE  that  spanned  zero.  What s̓  even  more  impressive 

 is  that  J.  Ahanmisi  was  able  to  do  this  both  in  terms  of  the  volume  and  spatial 

 distribution  of  his  field  goal  attempts.  He  had  194  FGA  (5th)  and  a  143  Spread  (3rd) 

 but  still  managed  to  be  efficient  with  his  shot.  For  all  players  with  FGA  >=  100,  he 

 ranked  3rd  in  PPA  (1st  among  non-centers),  1st  in  Effective  Range  and  Total  Effective 

 Range  %,  and  2nd  in  Net  Effective  Range  and  Player  Effective  Range  %  (1st  among 
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 non-centers).  In  fact,  he  was  the  only  player  ranked  in  the  top  3  of  PPA,  Spread, 

 Effective  Range,  Net  Effective  Range,  Player  Effective  Range  %,  and  Total  Effective 

 Range  %.  This  means  that  he  took  a  lot  of  field  goals,  he  took  them  from  a  lot  of 

 different  locations  on  the  court,  and  more  o�en  than  not  he  was  able  to  score  more 

 effectively than anyone else taking the same shot. 

 Table  4.15  shows  a  comparison  between  J.  Ahanmisi  and  select  players.  W. 

 Comboy  and  A.  Caracut  were  identified  as  players  with  similar  shooting  habits  in 

 Section  4.4.  A.  Melecio  had  similar  FGA,  EPPA,  Spread,  ERNG,  and  TERNG  values 

 while  B.  Akhuetie  had  similar  PPA,  PTS,  NERNG,  and  PERNG  values.  In  terms  of  the 

 spatial  metrics  introduced  in  the  study,  J.  Ahanmisi  has  the  best  statistics  among  all 

 the  players  while  in  terms  of  conventional  statistics  (FG%,  eFG,  PPA),  he  beats 

 everyone except for B. Akhuetie. 
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 Table 4.14 

 Statistics and rank of J. Ahanmisi in UAAP Season 81 

 J. Ahanmisi (ADU) 
 UAAP Season 81 

 Rank (FG >= 28) 
 82 players 

 Rank (FG >= 100) 
 24 players 

 FGA  194  5th  5th 

 EPPA  0.845  78th  24th 

 PPA  1.093  10th  3rd 

 SScE  0.247 (0.427, 0.068)  4th  1st 

 EPTS  164  6th  6th 

 PTS  212  3rd  3rd 

 PRLA  48  1st  1st 

 Spread  143  3rd  3rd 

 Effective Range  72  1st  1st 

 Net Effective Range  1  3rd  2nd 

 Player Effective 
 Range % 

 50.35  3rd  2nd 

 Total Effective 
 Range % 

 12.27  1st  1st 
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 Table 4.15 

 Statistics of J. Ahanmisi and select players in UAAP Season 81 

 Player  Pos  FGA  EPPA  PPA  EPTS  PTS  SScE  PRLA 

 J. Ahanmisi  SG  194  0.845  1.093  164  212  0.247  48 

 W. Comboy  G  119  0.874  0.857  104  102  -0.017  -2 

 A. Caracut  PG  127  0.819  0.877  111  104  -0.059  -7 

 A. Melecio  SG  203  0.847  0.926  172  188  0.078  16 

 B. Akhuetie  C  177  1.084  1.198  192  212  0.114  20 

 Player  Pos  Spread  ERANGE  NERANGE  PERANGE  TERANGE 

 J. Ahanmisi  SG  143  72  1  50.35  12.27 

 W. Comboy  G  91  34  -23  37.36  5.79 

 A. Caracut  PG  92  30  -32  32.61  5.11 

 A. Melecio  SG  142  57  -28  40.14  9.71 

 B. Akhuetie  C  54  26  -2  48.15  4.43 

 Player  Pos  2P  2PA  2P%  3P  3PA  3P%  FG%  eFG 

 J. Ahanmisi  SG  46  99  46.5  40  95  42.1  44.3  54.6 

 W. Comboy  G  24  61  39.3  18  58  31.0  35.3  42.9 

 A. Caracut  PG  34  84  40.5  12  43  27.9  36.2  40.9 

 A. Melecio  SG  46  111  41.4  32  92  34.8  38.4  46.3 

 B. Akhuetie  C  106  174  59.9  0  3  0.0  59.9  59.9 
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 The  global  spatial  metrics  computed  in  the  study  support  the  conclusion  that 

 J.  Ahanmisi  was  a  good,  effective,  and  efficient  shooter  and  scorer—  if  not  the  best, 

 most  effective,  and  most  efficient  one  —during  UAAP  Season  81  and  the  conventional 

 statistics  also  seem  to  confirm  this.  However,  these  global  spatial  metrics  and 

 conventional  statistics  do  not  provide  context  about  where  on  the  court  J.  Ahanmisi 

 was  able  to  perform  better  or  worse  than  the  other  players  nor  does  it  give  us  a 

 spatial  comparison  of  their  shooting  performance.  By  mapping  the  local  values  of 

 SScE  and  PRLA,  we  can  look  at  the  spatial  distribution  of  these  metrics  to  see  where 

 J. Ahanmisi was able to differentiate himself from the other players. 

 Figure  4.24  shows  the  local  SScE  maps  of  J.  Ahanmisi,  W.  Comboy,  A. 

 Caracut,  A.  Melecio,  and  B.  Akhuetie  while  Figure  4.25  shows  the  local  PRLA  of  the 

 same players. 

 J.  Ahanmisi s̓  SScE  and  PRLA  maps  show  that  he  took  shots  at  almost  all  areas 

 on  the  court—at  the  rim,  paint,  mid-range,  and  three-pointers.  This  is  similar  to  his 

 neighbors/players  with  similar  shooting  habits—W.  Comboy  and  A.  Caracut—and 

 also  similar  to  fellow  SG  A.  Melecio.  What  separates  J.  Ahanmisi  from  these  three 

 players  is  that  he  was  an  effective  scorer  at  all  these  court  areas.  Near  the  basket 

 (distance  to  basket  <=  2m),  J.  Ahanmisi  had  a  1.13  PPA,  0.09  SScE,  and  1.94  PRLA 

 which  was  better  than  W.  Comboy  (0.69  PPA,  -0.43  SScE,  -11.38  PRLA),  A.  Caracut 

 (0.94  PPA,  -0.18  SScE,  -5.97  PRLA),  and  A.  Melecio  (1.00  PPA,  -0.03  SScE,  -1.32  PRLA). 

 For  three-pointers,  J.  Ahanmisi  had  a  1.30  PPA,  0.41  SScE,  and  38.86  PRLA  which  was 
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 also  better  than  W.  Comboy  (0.93  PPA,  0.08  SScE,  4.74),  A.  Caracut  (0.84  PPA,  -0.03 

 SScE,  -1.37  PRLA),  and  A.  Melecio  (1.05  PPA,  0.19  SScE,  17.72  PRLA).  Even  for 

 mid-range  shots  (distance  between  3m  and  6m  from  the  basket),  J.  Ahanmisi  was 

 still  able  to  score  above  average  with  a  0.78  PPA,  0.08  SScE,  and  4.04  PRLA  which  was 

 on  par  with  W.  Comboy  (0.81  PPA,  0.12  SScE,  3.31  PRLA)  but  higher  than  A.  Caracut 

 (0.60 PPA, -0.07 SScE, -2.07 PRLA) and A. Melecio (0.64 PPA, -0.03 SScE, -1.216 PRLA). 

 The  difference  between  J.  Ahanmisi  and  B.  Akhuetie  is  apparent  in  their  SScE 

 and  PRLA  maps.  Where  J.  Ahanmisi  took  field  goals  at  almost  all  areas  on  the  court, 

 B.  Akhuetie s̓  field  goals  were  more  concentrated  near  the  basket.  B.  Akhuetie  took 

 147  FGA  at  locations  <=  2m  from  the  basket.  This  made  up  83%  of  all  his  FGA.  In 

 comparison,  J.  Ahanmisi  only  took  30  FGA  from  this  area  which  comprised  just  15% 

 of  his  total  FGA.  However,  B.  Akhuetie  was  very  effective  in  that  small  area  near  the 

 basket  where  he  took  his  shots.  For  locations  <=  2m  from  the  basket,  B.  Akhuetie 

 had  a  1.28  PPA,  0.127  SScE,  and  18.62  PRLA;  all  of  which  were  higher  than  J. 

 Ahanmisi  for  the  same  area  (1.13  PPA,  0.09  SScE,  1.94  PRLA).  B.  Akhuetie  was  also 

 effective  in  the  mid-range  albeit  in  a  small  sample  size.  Of  the  13  FGA  he  took 

 between  3m  to  6m  from  the  basket,  he  had  a  0.77  PPA,  0.13  SScE,  and  1.65  PRLA 

 which  was  similar  to  the  statistics  of  J.  Ahanmisi  (0.78  PPA,  0.08  SScE,  4.04  PRLA) 

 from  the  same  area.  It  should  be  noted  that  J.  Ahanmisi  took  almost  four  times  more 

 shots  from  the  area  (49  FGA)  than  B.  Akhuetie.  For  three-pointers,  B.  Akhuetie  was 

 an  a�erthought  in  Season  81.  He  only  took  3  attempts  and  missed  all  of  them  for  0 
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 PPA,  -0.81  SScE,  and  -2.419  PRLA.  Put  another  way,  B.  Akhuetie  actually  cost  his 

 team  almost  1  point  every  time  he  took  a  three  pointer  in  Season  81.  This  was  in 

 stark contrast with J. Ahanmisi s̓ performance from deep that season. 

 If  B.  Akhuetie  made  his  bread  near  the  basket,  J.  Ahanmisi  made  his  beyond 

 the  arc  (or  from  locations  6.5  meters  and  more  from  the  basket).  J.  Ahanmisi s̓  0.41 

 SScE  for  field  goals  taken  6.5  meters  away  or  more  from  the  basket  meant  that  for 

 every  attempt  he  took  at  that  distance,  he  was  scoring  almost  half  a  point  more  than 

 the  average  shooter  for  that  season.  He  took  94  FGA  from  that  area  which  was 

 almost  half  of  his  total  FGA  and  managed  a  38.86  PRLA.  He  wasnʼt  just  a  three-point 

 specialist  either.  Of  the  100  FGA  he  took  within  6.5  meters  from  the  basket,  he  had 

 0.90  PPA,  0.09  SScE,  and  9.1  PRLA.  Nevertheless,  even  if  he  missed  all  of  his  shots 

 within  6.5  meters  from  the  basket,  he  would  still  have  a  total  of  29.76  PRLA  and 

 0.153  SScE  which  would  still  rank  him  1st  and  3rd  in  those  metrics  respectively. 

 Think about that for a second. 
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 Figure 4.24 

 Local  SScE  map  of  J.  Ahanmisi  and  select  players.  The  size  of  the  pixel  indicates  the 

 number  of  field  goal  attempts  in  the  cell;  the  color  indicates  how  effective  a  player  is  at 

 scoring in the cell, positive values = more effective scoring (Local SScE). 
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 Figure 4.25 

 Local  PRLA  map  of  J.  Ahanmisi  and  select  players.  The  color  indicates  the  number  of 

 points  a  player  scores  above  or  below  the  league  average,  positive  values  =  more  effective 

 scoring (Local PRLA). 
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 Using  an  unpaired  weighted  t-test,  Ahanmisi s̓  total  SScE  was  found  to  be 

 significantly  higher  than  46  of  the  other  81  players  with  FGA  >=  28  at  p  =  0.05  .  For 

 players  with  FGA  >=  100  and  at  p  =  0.05  ,  Ahanmisi s̓  SScE  was  found  to  be 

 significantly  higher  than  all  players  except  for  the  9  players  below  him  on  the  list 

 and #15 C. Cansino. 

 His  total  SScE  was  significantly  higher  than  W.  Comboy  (  t-statistic=1.82, 

 p-value=0.03  )  and  A.  Caracut  (  t-statistic=2.32  p-value=0.01  ).  However,  comparing  his 

 total  SScE  with  A.  Melecio  (  t-statistic=1.37  p-value=0.09)  and  B.  Akhuetie 

 (  t-statistic=0.85  p-value=0.20)  found  no  support  for  the  hypothesis  that  J.  Ahanmisi s̓ 

 SScE was significantly higher than the two. 

 Ahanmisi s̓  SScE  for  field  goals  near  the  basket  was  significantly  higher  than 

 Comboy  (  t-statistic=2.67,  p-value=0.01  )  but  there  was  no  support  for  the  hypothesis 

 that  it  was  significantly  higher  than  the  other  three  players.  For  his  SScE  on 

 three-pointers,  it  was  found  to  be  significantly  higher  than  A.  Caracut 

 (  t-statistic=1.66, p-value=0.05  ) and B. Akhuetie (  t-statistic=1.63,  p-value=0.05  ). 
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 4.7  Team analysis 

 Aside  from  player  performance,  the  metrics  introduced  in  the  study  can  also 

 be used to study team performance. 

 4.7.1  UAAP  Season  81  Finals  Matchup  -  UP  vs  ADMU:  A  Good  Offense  vs  The  Best 

 Defense 

 The  UAAP  Season  81  Finals  provides  an  interesting  case  for  team-wide 

 analysis.  Aside  from  the  fact  that  it  was  the  first  time  in  32  years  that  the  UP  Fighting 

 Maroons  made  it  to  the  Finals  and  they  were  going  up  against  the  defending 

 champions  in  the  ADMU  Blue  Eagles,  this  matchup  featured  one  of  the  better 

 offenses of Season 81 (UP) against probably the best defense of Season 81 (ADMU). 

 Table  4.16  shows  the  SScE  and  oppSScE  metrics  of  the  eight  UAAP  teams 

 while table 4.17 shows their PRLA and oppPRLA metrics. 

 UP,  Season  81 s̓  runner  up,  had  a  positive  SScE  and  led  the  league  in  EPPA  and 

 PPA.  This  indicates  that  UP  took  field  goal  attempts  at  areas  on  the  court  where  it 

 was  easy  to  score  and  even  converted  those  attempts  at  an  above-average  rate.  This 

 is  a  testament  to  just  how  effective  UP s̓  offense  was  that  season.  Only  two  teams  had 

 a  positive  SScE—the  aforementioned  UP  and  FEU.  However,  when  the  95% 

 confidence  intervals  are  included,  the  SScE  intervals  of  all  eight  teams  overlap. 

 Seven  teams  had  confidence  intervals  that  span  zero—only  UST  didnʼt.  UST s̓ 

 confidence  interval  was  entirely  below  zero.  Using  an  unpaired  t-test,  UST s̓  SScE 
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 was  found  to  be  significantly  lower  than  the  FEU  (  t-statistic  =  2.20,  p-value  =  0.01  )  and 

 UP  (  t-statistic  =  2.00,  p-value  =  0.02  ).  FEU  and  UP  were  the  top  2  teams  in  terms  of 

 SScE  and  both  also  made  it  to  the  Final  4  in  Season  81.  UP  also  had  an  SScE  that  was 

 significantly  higher  than  UE  (  t-statistic  =  1.79,  p-value  =  0.04  )—Season  81 s̓ 

 cellar-dweller.  Interestingly,  the  SScE  of  Season  81 s̓  champion,  ADMU,  was  not 

 found  to  be  significantly  higher  than  any  of  the  other  teamsʼ  SScE.  This  was  not  the 

 case for oppSScE. 

 The  metric  oppSScE  is  equal  to  the  SScE  of  a  team's  opponents.  It  can  be  used 

 to  show  how  effective  opponents  score  against  a  team.  A  positive  value  means 

 opponents  are  scoring  more  than  expected—i.e.  the  team  has  poor  defense  or  is  bad 

 at  preventing  the  opposing  team  from  scoring—while  negative  values  indicate  the 

 opposite.  The  lower  the  value  of  oppSScE,  the  better.  For  Season  81,  five  teams  had 

 negative  oppSScE  and  three  of  these  teams  had  a  95%  confidence  interval  entirely 

 below  zero.  One  of  these  three  teams  is  ADMU  that  led  the  league  in  oppSScE  and 

 oppPPA  even  though  their  oppEPPA  was  just  average.  This  indicates  that  ADMU  had 

 a  really  good  defense  that  prevented  opposing  teams  from  scoring  even  at  areas 

 where  it  was  normally  easy  to  score  from.  An  unpaired  t-test  of  ADMU s̓  SScE 

 showed  that  it  was  significantly  lower  than  all  of  the  other  teams  except  ADU  and 

 DLSU.  On  the  other  hand,  UP  had  a  good  oppEPPA  but  had  poor  oppPPA  and  the 

 worst  oppSScE.  It  also  had  an  oppSScE  that  was  significantly  higher  than  four  of  the 

 other  seven  teams.  This  indicates  the  opposite  of  what  happened  with  ADMU.  In  the 
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 case  of  UP,  they  were  unable  to  prevent  opposing  teams  from  scoring  even  at  areas 

 where it was normally difficult for teams to score. 

 The  same  pattern  emerged  for  PRLA  and  oppPRLA.  ADMU  had  average  PRLA 

 but  dominant  oppPRLA  indicative  of  a  good  offense  and  great  defense  while  UP  had 

 great PRLA but poor oppPRLA indicative of a great offense and bad defense. 

 How  about  the  Spread  and  Range  metrics?  Tables  4.18  shows  the  Spread  and 

 Range  metrics  of  the  UAAP  teams  and  their  opponents  in  Season  81.  In  terms  of 

 offense,  ADMU  had  good  Spread  but  were  at  the  bottom  in  terms  of  Effective  Range 

 which  suggests  that  even  though  ADMU  attempted  field  goals  at  different  areas  on 

 the  court,  they  were  only  actually  effective  in  a  few  of  them  (around  38%  of  their 

 Spread  or  20%  of  the  total  scoring  area).  UP  fared  a  bit  better  than  ADMU.  What s̓ 

 interesting  with  UP  is  that  they  had  a  really  small  Spread  (276  shooting  cells)  which 

 contributed  to  their  low  ERNG  and  TERNG.  However,  they  were  able  to  score 

 effectively  at  a  slightly  higher  percentage  of  their  Spread  than  ADMU  (PERNG  -  UP: 

 40%, ADMU: 38%). 

 The  difference  between  UP  and  ADMU  is  more  apparent  in  their  opponentsʼ 

 Spread  and  Range  metrics.  ADMU s̓  opponents  had  the  second  lowest  Spread  and  the 

 lowest  ERNG,  NERNG,  PERNG,  and  TERNG.  Whether  this  was  because  of  ADMU s̓ 

 defense  or  the  offensive  tactics  of  their  opponents,  this  suggests  that  not  only  was 

 the  area  where  ADMU s̓  opponents  attempted  field  goals  small,  ADMU  was  also  able 

 to  successfully  limit  the  number  of  locations  where  their  opponents  scored 
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 effectively.  ADMU  opponents  managed  to  score  above  what s̓  expected  in  just  ⅓  of 

 their  Spread  and  ⅙  of  the  total  scoring  area.  In  contrast,  UP  was  ranked  near  the 

 bottom  for  the  Spread  and  Range  metrics.  Compared  to  ADMU s̓  opponents,  UP s̓ 

 opponents  took  field  goals  at  more  locations  on  the  court  (323  Spread  vs  297  for 

 ADMU)  and  scored  better  than  expected  at  more  of  these  locations  (41.8%  PERNG  vs 

 33.0% for ADMU; 23.0% TERNG vs 16.7% for ADMU). 

 Table 4.16 

 Expected and actual points per attempt for UAAP teams and their opponents in Season 81. 

 Team  Season 81 
 outcome 

 EPPA 
 [rank] 

 PPA 
 [rank] 

 SScE 95% CI 
 [rank] 

 ADMU  Champion  0.924 [2]  0.920 [3]  -0.004 (0.064, -0.071) [3] 

 ADU  Final 4  0.896 [8]  0.875 [5]  -0.022 (0.046, -0.089)[5] 

 DLSU  eliminated  0.900 [7]  0.892 [4]  -0.009 (0.060, -0.077) [4] 

 FEU  Final 4  0.917 [4]  0.952 [2]  0.035 (0.107, -0.037) [1] 

 NU  eliminated  0.907 [5]  0.852 [7]  -0.054 (0.011, -0.12) [6] 

 UE  eliminated  0.922 [3]  0.855 [6]  -0.066 (0.004, -0.136) [7] 

 UP  Finals  0.962 [1]  0.989 [1]  0.027 (0.102, -0.047) [2] 

 UST  eliminated  0.902 [6]  0.824 [8]  -0.078 (-0.007, -0.15) [8] 
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 Table 4.16  (cont) 

 Team  Season 81 
 outcome 

 oppEPPA 
 [rank] 

 oppPPA 
 [rank] 

 oppSScE 95% CI 
 [rank] 

 ADMU  Champion  0.916 [4]  0.815 [1]  -0.101 (-0.033, -0.170) [1] 

 ADU  Final 4  0.920 [5]  0.838 [3]  -0.082 (-0.015, -0.148) [2] 

 DLSU  eliminated  0.907 [3]  0.832 [2]  -0.075 (-0.008, -0.142) [3] 

 FEU  Final 4  0.898 [1]  0.882 [4]  -0.017 (0.054, -0.087) [5] 

 NU  eliminated  0.926 [7]  0.895 [5]  -0.032 (0.032, -0.096) [4] 

 UE  eliminated  0.924 [6]  0.972 [8]  0.049 (0.121, -0.023) [7] 

 UP  Finals  0.901 [2]  0.960 [6]  0.059 (0.130, -0.012) [8] 

 UST  eliminated  0.933 [8]  0.965 [7]  0.032 (0.099, -0.035) [6] 

 Table 4.17 

 Expected and actual points for UAAP teams and their opponents in Season 81. 

 Team  Season 81 
 outcome 

 EPTS 
 [rank] 

 PTS 
 [rank] 

 PRLA 
 [rank] 

 ADMU  Champion  925 [1]  921 [1]  -4 [3] 

 ADU  Final 4  879 [3]  858 [4]  -21 [5] 

 DLSU  eliminated  863 [5]  855 [5]  -8 [4] 

 FEU  Final 4  853 [7]  886 [3]  33 [1] 

 NU  eliminated  877 [4]  824 [6]  -53 [6] 

 UE  eliminated  852 [8]  772 [8]  -60 [7] 

 UP  Finals  890 [2]  915 [2]  25 [1] 

 UST  eliminated  854 [6]  780 [7]  -74 [8] 
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 Table 4.17 (cont) 

 Team  Season 81 
 outcome 

 oppEPTS 
 [rank] 

 oppPTS 
 [rank] 

 oppPRLA 
 [rank] 

 ADMU  Champion  816 [2]  726 [1]  -90 [1] 

 ADU  Final 4  862 [4]  785 [2]  -77 [2] 

 DLSU  eliminated  906 [6]  831 [3]  - 73 [3] 

 FEU  Final 4  883 [5]  867 [5]  -16 [5] 

 NU  eliminated  940 [8]  908 [7]  -32 [4] 

 UE  eliminated  833 [3]  877 [6[  44 [7] 

 UP  Finals  798 [1]  851 [4]  53 [8] 

 UST  eliminated  934 [7]  966 [8]  32 [6] 



 159 

 Table 4.18 

 Number  and  proportion  of  the  scoring  area  where  the  UAAP  teams  and  their  opponents 

 scored more than expected in Season 81. 

 Team  Season 81  Spread 
 [rank] 

 ERNG 
 [rank] 

 NERNG 
 [rank] 

 PERNG 
 [rank] 

 TERNG 
 [rank] 

 ADMU  Champion  323 [3]  122 [t6]  -79 [8]  37.8% [8]  20.8% [t6] 

 ADU  Final 4  315 [6]  139 [2]  -36 [1]  44.1% [1]  23.7% [2] 

 DLSU  eliminated  310 [7]  136 [3]  -38 [2]  43.9% [2]  23.2% [3] 

 FEU  Final 4  330 [1]  143 [1]  -44 [3]  43.3% [3]  24.4% [1] 

 NU  eliminated  319 [5]  126 [4]  -66 [5]  39.5% [5]  21.5% [4] 

 UE  eliminated  325 [2]  124 [5]  -77 [6]  38.2% [6]  21.1% [5] 

 UP  Finals  276 [8]  110 [8]  -56 [4]  39.9% [4]  18.7% [8] 

 UST  eliminated  322 [4]  122 [t6]  -78 [7]  37.9% [7]  20.8% [t6] 
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 Table 4.18 (cont) 

 Team  Season 81 
 outcome 

 opp 
 Spread 
 [rank] 

 opp 
 ERNG 
 [rank] 

 opp 
 NERNG 

 [rank] 

 opp 
 PERNG 

 [rank] 

 opp 
 TERNG 

 [rank] 

 ADMU  Champion  297 [2]  98 [1]  -101 [1]  33.0% [1]  16.7% [1] 

 ADU  Final 4  324 [7]  116 [2]  -92 [2]  35.8% [2]  19.8% [2] 

 DLSU  eliminated  312 [4]  126 [t3]  -60 [4]  40.4% [4]  21.5% [t3] 

 FEU  Final 4  347 [8]  145 [8]  -57 [5]  41.8% [5]  24.7% [8] 

 NU  eliminated  317 [5]  126 [t3]  -64 [3]  39.7% [3]  21.5% [t3] 

 UE  eliminated  310 [3]  135 [t6]  -40 [8]  43.5% [8]  23.0% [t6] 

 UP  Finals  323 [6]  135 [t6]  -53 [6]  41.8% [6]  23.0% [t6] 

 UST  eliminated  296 [1]  127 [5]  -42 [7]  42.9% [7]  21.6% [5] 

 The  global  metrics  indicate  that  UP  had  a  slightly  better  offense  than  ADMU 

 while  ADMU  was  the  better  defensive  team—if  not  the  best  defensive  team  of  Season 

 81. 

 A  look  at  the  local  SScE,  PRLA,  oppSScE,  and  oppPRLA  maps  of  both  teams 

 in  Figures  4.26,  4.27,  4.28,  and  4.29  provides  better  insight  as  to  where  the 

 differences between the two teams can be found. 

 Both  teams  were  quite  proficient  near  the  basket  (<=  2m)  as  evidenced  by  the 

 large  green  colored  cells  around  that  area  in  the  SScE  and  PRLA  maps.  UP  took  half 

 of  their  field  goals  from  this  area  (460  FGA)  and  found  success  with  1.18  PPA,  0.062 

 SScE,  and  28.72  PRLA.  ADMU  only  took  36%  of  their  total  field  goals  from  this  range 
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 (359  FGA)  but  actually  performed  better  than  UP  with  1.23  PPA,  0.114  SScE,  and 

 41.039  PRLA.  This  isnʼt  surprising  since  both  teams  employed  dominant  big  men 

 (e.g.  B.  Akhuetie  for  UP  and  A.  Kouame  for  ADMU)  and  athletic  players  who  can 

 drive  to  the  basket  (e.g.  Ju.  Gomez  de  Liaño  for  UP  and  T.  Ravena  for  ADMU).  Both 

 teams  struggled  from  mid-range  (between  3m  to  6m  from  the  basket)  but  UP 

 managed  to  hold  a  slight  advantage  over  ADMU  with  the  former  having  a  0.60  PPA, 

 -0.062  SScE,  and  -7.64  PRLA  while  the  latter  had  0.58  PPA,  -0.093  SScE,  and  -12.93 

 PRLA.  Surprisingly,  ADMU  performed  poorly  near  and  beyond  the  three  point  line 

 (>=  6.5  meters  from  the  basket)  even  though  those  shots  accounted  for  42%  of  their 

 total  field  goals.  They  took  417  three-pointers  or  an  average  just  shy  of  30  attempts 

 per  game.  In  that  area,  ADMU  only  managed  a  0.83  PPA,  -0.043  SScE,  and  -18.01 

 PRLA.  UP  only  averaged  20  three-pointers  per  game,  one  of  the  lowest  for  all  the 

 teams,  but  performed  better  than  ADMU  with  0.88  PPA,  0.009  SScE,  and  2.41  PRLA. 

 Had  ADMU  been  better  at  converting  their  three-pointers,  they  probably  would  have 

 been more dominant in Season 81. 

 In  terms  of  defense,  the  local  oppSScE  and  oppPRLA  maps  showcase  the 

 dominance  of  ADMU  especially  at  areas  near  the  basket  and  beyond  the  three-point 

 line.  There  arenʼt  many  green-colored  shooting  cells  that  indicate  scoring  above 

 expected  that  can  be  found  in  these  areas.  In  fact,  most  of  them  are  brown  in  color 

 indicating  that  ADMU s̓  opponents  scored  worse  than  expected  in  these  locations. 

 This  is  significant  because  the  teams  in  Season  81  took  around  70%  of  their  field 
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 goals  and  scored  a  majority  of  their  points  from  these  two  areas.  ADMU s̓  defense 

 was  solid  near  the  basket  and  only  allowed  1.04  PPA,  -0.041  SScE,  and  -14.19  PRLA 

 from  their  opponents.  Opposing  teams  attempted  about  the  same  number  of  field 

 goals  as  ADMU  (344  vs  359)  from  this  area  but  ADMU  was  able  to  outscore  their 

 opponents  by  almost  0.2  points  for  every  shot  taken  near  the  basket.  They  were  even 

 more  dominant  defending  three-pointers  where  they  limited  opponents  to  a  measly 

 0.71  PPA,  -0.179  SScE,  and  -54.50  PRLA.  ADMU s̓  opponents  scored  almost  1  point 

 less  than  expected  for  every  6  three  pointers  they  attempted.  Three-point  shooters 

 who  favored  the  right  side  of  the  court  had  a  hard  time  against  ADMU  evidenced  by 

 the  large  number  of  brown  cells  along  the  three-point  line  on  the  right  side  of  the 

 court  in  the  oppSScE  and  oppPRLA  maps.  Overall,  ADMU s̓  opponents  were 

 ineffective  near  or  far  from  the  basket,  only  managing  a  0.88  PPA,  -0.107  SScE,  and 

 -69.40  PRLA  from  those  areas.  For  comparison,  the  opponents  of  the  other  seven 

 UAAP  teams  had  an  average  of  0.98  PPA,  -0.006  SscE,  and  -4.44  PRLA  from  the  same 

 area. 

 Defense  was  not  the  strongest  suit  of  UP  for  Season  81.  Among  the  eight 

 teams,  they  had  the  worst  oppSScE  and  oppPRLA  in  all  locations  except  mid-range 

 shots  (3m  to  6m  from  the  basket)  which  was  their  lone  bright  spot  on  defense.  They 

 actually  led  the  league  in  defending  that  area,  only  allowing  0.55  PPA,  -0.132  SScE, 

 and  -21.7  PRLA  from  opponents.  Unfortunately,  opposing  teams  only  attempted  17% 

 of  their  shots  from  that  area  against  UP.  In  all  other  areas,  UP  got 
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 torched—particularly  near  the  basket  and  from  three-point  range.  UP  was 

 horrendous  at  defending  these  two  areas.  Near  the  basket,  they  allowed  their 

 opponents  to  get  1.18  PPA,  0.075  SScE,  and  23.3  PRLA  which  was  equivalent  to  UP s̓ 

 own  performance  in  that  area.  This  means  that  even  though  UP  was  effective  on 

 offense  near  the  basket,  their  defense  allowed  their  opponents  to  be  equally 

 effective  against  them.  UP  also  gave  up  a  league-worst  1.02  PPA,  0.167  SScE,  and  52.2 

 PRLA  on  opposing  three-pointers.  UP  and  ADMU s̓  opponents  attempted  around  the 

 same  number  of  three-pointers  (305  for  ADMU  opponents,  312  for  UP  opponents) 

 but  where  ADMU s̓  opponents  were  scoring  1  less  point  than  expected  for  every  six 

 shots,  UP s̓  opponents  were  scoring  1  more  point  than  expected  for  the  same 

 number  of  shots.  UP s̓  opponents  took  67%  of  their  field  goals  from  near  the  basket 

 or  from  three-point  range  where  they  manhandled  UP  to  the  tune  of  1.10  PPA,  0.121 

 SScE,  and  75.5  PRLA.  Compared  to  ADMU,  UP  allowed  almost  a  quarter  of  a  point 

 more  for  every  shot  taken  in  these  two  areas.  All  of  these  suggest  that  UP  had 

 significantly  worse  defense  than  ADMU  and  that  they  were  unable  to  prevent  their 

 opponents  from  scoring  against  them  especially  in  the  areas  that  mattered 

 most—near the basket and three-pointers. 
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 Figure 4.26 

 Local SScE maps of ADMU and UP in Season 81. 

 Figure 4.27 

 Local PRLA maps  of ADMU and UP in Season 81. 
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 Figure 4.28 

 Local oppSScE maps of ADMU and UP in Season 81. 

 Figure 4.29 

 Local oppPRLA maps of ADMU and UP in Season 81. 
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 4.8  Metric Analysis 

 4.8.1  Correlation of SScE and PRLA with EFG, FGA, PTS 

 Computing  the  correlation  of  SScE  and  PRLA  with  conventional  statistics 

 such  as  EFG,  FGA,  and  PTS  provides  a  good  opportunity  to  determine  if  another 

 metric  captures  the  same  information  as  SScE  and  PRLA  (and  vice  versa)  as  well  as 

 to  identify  whether  or  not  there  is  evidence  to  suggest  that  the  changes  in  SScE  and 

 PRLA values can be explained by another metric. 

 Figure  4.25  shows  the  correlation  between  SScE  and  Effective  Field  Goal  % 

 (EFG)  while  Figure  4.23  shows  the  correlation  between  PRLA  and  EFG.  In  terms  of 

 SScE  and  EFG,  there  was  a  near  perfect  positive  correlation  between  the  two 

 (Pearson  correlation  coefficient  r  =  0.94,  p  at  near  zero  value)  indicating  that  SScE 

 can  work  equally  well  as  EFG  for  a  global  or  summary  metric  of  shooting 

 performance.  A  player  with  high  SScE  had  high  EFG  and  vice  versa.  In  addition  to 

 this,  SScE  also  has  a  local  component  computed  per  shooting  cell  that  can  be  used  to 

 differentiate  players  based  on  where  they  shoot  or  score  from.  A  correlation 

 between  the  local  SScE  and  a  local  computation  of  EFG  is  something  that  can  be 

 looked  at  in  future  studies.  In  terms  of  the  correlation  between  PRLA  and  EFG,  there 

 was  substantial  correlation  between  them  (Pearson  correlation  coefficient  r  =  0.80,  p 

 at near zero value) but not as perfectly linear as SScE and EFG. 
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 Figure 4.25 

 Effective  FG%  vs  Spatial  Scoring  Effectiveness  for  UAAP  Season  81.  Selected  outlying 

 players are highlighted. 
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 Figure 4.23 

 Effective  FG%  vs  Points  Relative  to  League  Average  for  UAAP  Season  81.  Selected  outlying 

 players are highlighted 
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 The  second  thing  looked  at  was  whether  or  not  SScE  and  PRLA  are  correlated 

 with  FGA  or  the  number  of  field  goal  attempts  by  a  player.  Does  taking  more  FGA 

 mean  that  a  player  will  have  a  higher  or  lower  SScE  and  PRLA  values?  Figure  4.24 

 shows  the  correlation  between  SScE  and  FGA  while  Figure  4.25  shows  the 

 correlation  between  PRLA  and  FGA.  In  both  instances,  the  Pearson  correlation 

 coefficient  r  was  low  (0.20  for  SScE  and  FGA,  0.27  for  PRLA  and  FGA)  suggesting 

 weak,  if  not  minimal,  linear  correlation  between  the  two  statistics  and  FGA.  Put 

 another  way,  the  players  who  took  a  high  number  of  field  goals  arenʼt  always  the 

 ones  with  the  highest  SScE  or  PRLA.  In  fact,  we  can  see  in  Figure  4.25  that  the  player 

 with the most number of FGA (A. Pasaol) actually has a negative PRLA value. 

 Figure  4.24  displays  one  of  the  observations  and  intuitions  previously  made 

 about  how  the  range  of  SScE  values  become  narrower  as  players  take  more  field  goal 

 attempts  indicating  that  as  a  player  takes  more  shots,  it  becomes  increasingly  less 

 likely  for  him  to  score  more  or  less  than  what  is  expected.  In  the  figure,  a  triangular 

 pattern  appears  with  a  wide  base  parallel  to  the  y-axis  that  seems  to  converge  to  y=0 

 as  we  move  along  the  x-axis  (i.e.  as  more  FGA  are  taken).  Only  one  player  is  not 

 included in this triangle—J. Ahanmisi. 
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 Figure 4.24 

 Field  Goal  Attempts  vs  Spatial  Scoring  Effectiveness  for  UAAP  Season  81.  Selected  outlying 

 players are highlighted. 
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 Figure 4.25 

 Field  Goal  Attempts  vs  Points  Relative  to  League  Average  for  UAAP  Season  81.  Selected 

 outlying players are highlighted 
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 So  shooting  more  field  goals  does  not  mean  better  SScE  and  PRLA  values  but 

 how  about  points?  Does  scoring  more  points  mean  that  a  player  will  have  better 

 SScE  and  PRLA?  Figures  4.26  and  4.27  show  the  correlation  of  SScE  and  points 

 scored  and  the  correlation  of  PRLA  and  points  scored,  respectively.  In  both  graphs, 

 we  see  that  there  was  some  linear  correlation  (Pearson  correlation  coefficient  r  = 

 0.40,  p  =  0.0002  for  SScE  vs  PTS;  Pearson  correlation  coefficient  r  =  0.47,  p  at  near 

 zero  value  for  PRLA  vs  PTS).  It s̓  not  as  strong  as  the  correlation  of  the  two  metrics 

 with  EFG  but  it s̓  also  not  as  weak  as  their  correlation  to  FGA.  In  fact,  there  was  a 

 general  trend  in  both  graphs  where  the  values  of  the  metrics  do  increase  as  the 

 number  of  points  also  increase.  This  pattern  was  more  apparent  between  PRLA  and 

 PTS  than  SScE  and  PTS.  An  interesting  case  in  both  graphs  is  A.  Pasaol  who  had  the 

 most FGA in Season 81 but only had average SScE and PRLA values. 
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 Figure 4.26 

 Points  Scored  vs  Spatial  Scoring  Effectiveness  for  UAAP  Season  81.  Selected  outlying 

 players are highlighted. 



 174 

 Figure 4.27 

 Points  Scored  vs  Points  Relative  to  League  Average  for  UAAP  Season  81.  Selected  outlying 

 players are highlighted 
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 5.  Summary and Recommendations 

 In  the  beginning,  this  study  set  out  to  accomplish  the  following:  (1)  to 

 generate  and  share  a  spatial  field  goal  dataset  of  the  UAAP,  (2)  to  use  the  said  dataset 

 to  spatially  characterize  field  goals  and  find  players  with  similar  shooting  habits,  (3) 

 to  create  “spatially-aware”  metrics  of  shooting  that  incorporate  the  field  goal 

 distribution  of  teams  and  players,  and  (4)  to  show  that  spatial  analysis  and 

 visualization  are  applicable  in  the  study  of  shooting  and  scoring  in  Philippine 

 basketball. This study has achieved all these objectives. 

 5.1  Summary and conclusion 

 First,  the  study  generated  a  field  goal  dataset  of  UAAP  Season  81  from  online 

 shot-chart  data  and  showed  that  it  was  possible  to  have  usable  spatial  field  goal  data 

 even  without  the  use  of  player  tracking  systems.  This  dataset  is  released  under  an 

 open  license  at:  https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting- 

 philippine-basketball/tree/main/data  in  order  to  encourage  and  support  other 

 studies  that  want  to  spatially  analyze  shooting  and  scoring  in  the  UAAP,  build  on  the 

 current  study,  and  expand  the  body  of  work  about  the  use  of  spatial  analysis  and 

 visualization  in  Philippine  basketball.  Of  course  the  accuracy  of  the  field  goal 

 locations  from  the  online  shot-charts  could  not  be  validated  nor  compared  with 

 those from camera tracking systems because the latter data does not currently exist. 

https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball/tree/main/data
https://github.com/benhur07b/ms-thesis-spatial-analysis-shooting-philippine-basketball/tree/main/data
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 Second,  the  study  was  able  to  characterize  the  field  goals  for  UAAP  Season  81 

 by  finding  patterns  in  the  field  goal  distributions  of  players  using  Non-negative 

 Matrix  Factorization  (NMF)  instead  of  simply  dividing  the  court  arbitrarily. 

 Interestingly  enough,  even  though  there  are  countless  ways  to  divide  the  court  into 

 shooting  areas,  the  study  found  that  the  field  goals  during  UAAP  Season  81  can  be 

 characterized  by  just  five  areas  or  shot-types:  the  restricted  area/at-rim,  key  and 

 wing  three-pointers,  mid-range  +  some  paint,  le�-block  +  some  paint,  and  corner 

 three  pointers  +  some  wing  three-pointers.  As  a  consequence  of  using  NMF  for 

 computing  the  court  areas  (i.e.  spatial  basis  vectors)  of  field  goals,  the  study  was  also 

 able  to  generate  the  frequency  at  which  individual  players  took  shots  at  these 

 shooting  areas.  These  shooting  frequencies  were  used  to  show  that  it  was  possible  to 

 identify  players  with  similar  shooting  habits  by  applying  a  Nearest  Neighbor 

 analysis. 

 Third,  several  new  metrics  were  introduced  in  the  study  based  on  the 

 premise  that  there  exists  a  spatial  surface  overlying  the  offensive  half-court  which 

 represents  the  background  local  values  of  the  number  of  points  scored  per  attempt 

 at  that  location  on  the  court  and  that  although  these  background  values  cannot  be 

 directly  observed,  their  values  can  be  inferred  from  a  large  enough  sample  in  order 

 to  estimate  the  expected  points  per  attempt  that  should  be  scored  at  a  specific 

 location  on  the  court.  The  expected  points  per  attempt  at  each  location  obtained  by 

 applying  Empirical  Bayes  (EB)  estimation  and  a  prior  distribution  that  includes 
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 nearby  and  equidistant  locations  resulted  in  a  map  that  was  less  spatially  noisy  than 

 the  raw  points  per  attempt.  The  metrics  Spatial  Scoring  Effectiveness  (SScE)  and 

 Points  Relative  to  League  Average  (PRLA)  were  computed  by  comparing  the 

 expected  points  per  attempt  (or  points)  scored  at  each  court  location  with  the  actual 

 points  per  attempt  (or  points)  scored.  SScE  and  PRLA  have  several  advantages  over 

 conventional  statistics:  (1)  they  explicitly  incorporate  the  spatial  nature  of  shooting 

 which  can  be  used  to  differentiate  players  with  similar  conventional  statistics,  (2) 

 they  have  local  values  that  can  be  mapped  to  show  the  spatial  distribution  of  SScE 

 and  PRLA  which  is  useful  if  we  want  to  focus  on  analyzing  or  improving  a  player  or 

 teams̓  performance  at  a  specific  area  on  the  court,  and  (3)  confidence  intervals  for 

 the  EB-estimated  PPA,  SScE,  and  PRLA  can  be  computed  for  each  shooting  cell  or  set 

 of  shooting  cells  which  is  useful  when  comparing  a  player/teams̓  expected  and 

 actual  performance  or  a  player/teams̓  performance  with  that  of  another.  Aside  from 

 SScE  and  PRLA,  new  Range  metrics  based  on  the  SScE  were  introduced—e.g. 

 Effective  Range,  Net  Effective  Range,  Player/Team  Effective  Range  %,  and  Total 

 Effective  Range  %—that  can  serve  as  summary  values  for  comparing  teams  and 

 players based on how large of an area on the court they score better than expected. 

 Lastly,  the  application  of  the  metrics  introduced  in  the  study  to  UAAP  Season 

 81  showed  how  spatial  analysis  and  visualization  can  be  used  to  compare,  contrast, 

 and  present  player  and  team  performance.  Additionally,  these  metrics  were  able  to 

 highlight  and  provide  insight  on  interesting  cases  during  Season  81.  J.  Ahanmisi  is 
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 one  example.  Although  conventional  statistics  tend  to  agree  that  Ahanmisi  had  a 

 good  shooting/scoring  season,  they  failed  to  give  justice  to  just  how  good  his 

 shooting  performance  was  for  that  season.  Spatial  metrics  were  able  to  uncover  this 

 and  put  it  in  full  display.  They  showed  that  even  though  Ahanmisi s̓  conventional 

 shooting  statistics  were  similar  to  other  players,  he  actually  had  one  of  the  most 

 difficult  field  goal  distributions  during  the  season—evidenced  by  his  low  EPPA—yet 

 he  was  one  of  only  a  handful  of  players  who  managed  to  significantly  score  beyond 

 what  was  expected  as  shown  by  his  SScE  and  PRLA  statistics.  In  addition  to  this,  the 

 study  found  that  Ahanmisi  not  only  scored  significantly  higher  than  what  was 

 expected  of  his  field  goal  distribution,  he  also  performed  significantly  better  than  a 

 majority  of  the  players  that  season.  Even  more  impressive  was  that  he  was  able  to  do 

 this  consistently  while  being  one  of  the  top  players  with  the  most  number  of  field 

 goal  attempts  and  most  number  of  field  goal  locations  as  shown  by  his  Spread  and 

 Range  metrics.  Similarly,  the  case  of  ADMU  and  UP—the  two  teams  who  met  in  the 

 Finals  of  Season  81—demonstrated  how  the  metrics  introduced  in  the  study  can  be 

 used  for  team-wide  analysis  of  both  offense  and  defense.  It  showed  the  locations  on 

 the  court  where  the  two  teams  were  effective  at  scoring  or  where  they  were  effective 

 at  limiting  their  opponents  from  scoring.  The  analysis  of  both  teams  found  that  UP 

 had  an  effective  yet  limited  offense  that  was  focused  on  shots  near  the  basket  based 

 on  their  Spread,  Range  metrics,  SScE,  and  PRLA.  However,  their  defense  also 

 allowed  their  opponents  to  score  effectively,  especially  near  the  basket  and  from  the 
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 three-point  area.  In  contrast,  ADMU s̓  offense  was  average.  The  difference  between 

 their  expected  and  actual  points  scored  was  not  found  to  be  significant.  The  same 

 was  also  true  when  comparing  their  offensive  performance  against  that  of  the  other 

 teams.  What  the  study  found,  however,  was  the  sheer  dominance  of  ADMU s̓  defense 

 at  limiting  the  effectiveness  of  opposing  teams  from  scoring  from  the  field.  The 

 spatial  metrics  introduced  in  the  study  showed  that  ADMU  led  the  league  both  in 

 preventing  opponents  from  scoring  effectively  (oppSScE  and  oppPRLA)  and  in 

 limiting  the  number  of  locations  on  the  court  where  opponents  score  effectively 

 against  them  (RNG,  NERNG,  PERNG,  TERNG).  They  also  found  that  ADMU s̓ 

 opponents  scored  significantly  lower  than  expected  based  on  the  spatial  distribution 

 of  their  field  goals  and  that  the  difference  in  the  expected  and  actual  performance  of 

 ADMU s̓  opponents  was  significantly  larger  than  that  of  the  opponents  of  a  majority 

 of  the  teams.  It s̓  not  a  stretch  to  say  that  for  ADMU  in  UAAP  Season  81,  the  coachs̓ 

 adage of “Defense wins championships.” rang true. 

 The  application  of  spatial  analysis  and  visualization  of  shooting  in  basketball 

 was  able  to  extract  and  display  information  absent  from  conventional  statistics, 

 provide  new  insight  into  player  and  team  performance,  and  challenge  some 

 assumptions that we have about shooting/scoring while also validating others. 
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 5.2  Recommendations for future work 

 In  terms  of  the  data,  it  is  hoped  that  in  the  future,  player  tracking  systems 

 could  provide  better  and  larger  datasets  that  can  be  used  in  studying  Philippine 

 basketball  spatially.  A  larger  dataset  could  provide  more  information  and  better 

 estimates  about  how  shooting  habits  and  performance  change  over  time.  Data 

 covering  multiple  seasons  will  not  only  allow  comparisons  of  player  and  team 

 performance  over  time  but  also  enable  the  creation  of  models  based  on  the  spatial 

 data  that  can  be  used  to  predict  future  performance  of  players  and  teams.  Having 

 data  from  the  professional  basketball  leagues  like  the  PBA  and  MPBL  would  also 

 enable  studies  about  how  and  if  shooting  and  scoring  ability  in  the  collegiate 

 leagues  translate  to  the  pros—i.e.  do  players  with  good  spatial  shooting  metrics  in 

 college  remain  that  way  when  they  turn  professional,  are  spatial  shooting  metrics  in 

 college  a  good  indicator  that  a  player  will  be  a  good  shooter/scorer  in  the 

 professional  leagues.  With  more  complete  data,  multivariate  and  hierarchical 

 analysis  of  shooting  and  scoring  will  also  be  possible  so  that  contextual  information 

 such  as  the  time  of  the  game,  the  deficit  in  the  score,  and  the  presence  of  a  defender 

 can  be  accounted  for.  These  are  just  some  of  the  things  that  are  possible  if  more 

 spatial basketball data becomes available in the Philippines. 

 Other  clustering  and  classification  algorithms  can  also  be  looked  into  for 

 determining  groups  of  similar  players.  This  can  include  building  models  that  can 

 classify  players  into  shooting/scoring  archetypes  based  on  their  shooting  tendencies 
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 and  spatial  metrics.  This  could  then  lead  to  a  possible  study  to  identify  what  kinds  of 

 player archetypes make up a successful offense or team. 

 For  the  estimation  of  the  expected  points  and  points  per  attempt  at  different 

 areas  on  the  court,  fully-Bayesian  methods  can  be  explored  aside  from  other  local 

 value  estimators.  The  size  of  the  shooting  cells  used  can  also  be  changed  to  see  if 

 there  were  spatial  variations  in  shooting  that  were  not  captured  by  the  50cm  x  50cm 

 cells.  The  results  of  simpler  methods  such  as  kernel  smoothing  can  be  compared  to 

 those of Empirical Bayes or fully-Bayesian estimation. 

 Spatial  Scoring  Effectiveness,  Points  Relative  to  League  Average,  and  the 

 different  Range  metrics  can  be  adapted  in  other  studies  to  further  analyze  and 

 visualize  shooting/scoring.  Examples  include  computing  for  the  average  distance  of 

 player/team  shooting  cells,  le�-right  splits  to  determine  if  a  player/team  favors  or  is 

 better  at  one  side  of  the  court  over  the  other,  comparing  the  performance  of 

 different  on-court  lineups,  and  the  analysis  of  players  based  on  their  position, 

 height, etc. 
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